4.0 Initial a	nd Continuing Calibration	Yes	No	NA
4.1	For each calibration standard, was each analyte calculated within 70%-130% of the true value, RSD \leq 20%, or $r^2 \geq$ 0.99?	X		
4.2	Was the retention time window for each analyte and surrogate set using the midpoint standard of the curve?	X		
4.3	Was the relative retention time of each analyte within laboratory control limits?	X		
4.4	Was a second source calibration verification (ICV) analyzed for each calibration curve? If no, flag "X".	X		
4.5	Were continuing calibration standards analyzed every ten samples and at the end of the sequence? If no, flag "X".	X		
4.6	For each calibration standard used for quantitation, was the S/N Ratio ≥10:1 and for all analytes with promulgated standards was the confirmation ion at a S/N at 3:1? (Table B-15, non-DW matrices)			X
For initial ca	alibration: 70%-130%, RSD ≤20%, or r2≥0.99. J(+)/UJ(-)			
For ICV/CC	CV: %D>30%, Positive: J(+), Negative:J(+)/UJ(-).	•	•	_

5.0 Labora	tory Control Sample (LCS)	Yes	No	NA
5.1	Were LCS/LCSD analyzed at required frequency (one per 20 samples per batch) for each matrix?	X		
5.2	Are there any %R for LCS/LCSD recoveries outside the laboratory QC limits(lab default is 70%-130%)?	v		
5.2	Action: If Yes, for $\%$ R >130, J+(+) only; for $\%$ R 30%-70%, J-(+)/UJ(-), and $\%$ R<30%, J-(+)/X(-).	Λ		
5.3	Are there any RPD for LCS/LCSD recoveries outside the QC limits? If Yes, J(+) only.		X	
Notes:	PFNA at 140% associated with non-detects; no data qualifying action is required			

ICV minor exceedance greater than the UCL only associated with non-detects

Notes:

6.0 Surroga	ate Recovery/Intern	al Standard Area Co	unt/Extracted Internal Standa	rds (For Table B-15 Matrices)	Yes	No	NA
6.1	Are recoveries w	ithin acceptance criteri	a for all samples and method bla	anks?		X	
6.2	If No in Section 6	6.1, are these sample(s)	or method blank(s) reanalyzed?		X		
	If No in Section 6	5.2, is any sample diluti	on factor greater than 10? (reco	veries may be diluted out.)			
6.3		<10%	low	high		v	
0.3	Positives	J-	J-	J+		Λ	
	Non-detects	X	UJ	None			
	Has the Extracted	/Injected Standard area	count been met for all quality c	control and field samples? (50%-150%)			
6.4		<20%	low	high		v	
0.4	Positives	J+	J+	J-		Λ	
	Non-detects	X	UJ	None			
Notes:	Several surrogate	s less than UCL but gro	eater than 10%, associated mostl	y with NMeFOSAA and EtFOSAA			

	Spike/Matrix Spike Duplicate (MS/MSD)	Yes	No	NA
7.1	Were matrix spikes analyzed at required frequency (one per 20 samples per batch) for each matrix?	X		
	Are there any %R for matrix spike and matrix spike duplicate recoveries outside the laboratory QC limits?	i		
7.2	%Recovery: <10% 10%-70% >130%	X		
	Action: $J-(+)/X(-)$ $J-(+)/UJ(-)$ $J+(+)$ only			
7.3	Are there any RPD for matrix spike and matrix spike duplicate recoveries outside the QC limits? (±30%)	X		
7.5	Action: No action is required based on MS/MSd failure alone. Note in the report and use professional judgement.	Λ		
Notes:	Several less than the LCL, the parent sample results are flagged UJ because these are minor exceedances			
	r			
8.0 Field/La	aboratory Duplicates	Yes	No	NA
8.1	Acceptable field duplicate results? If no, J(+) parent sample/field duplicate only.	X		
Notes:				
	r			
9.0 Instrun	nent Sensitivity Check (ISC)	Yes	No	NA
9.1	Was an instrument sensitivity check analyzed prior to analysis and every 12 hours? If not X(+/-)	X		
9.2	Were analyte concentrations at the LOQ for the ISC and within ±30% of their true values? If not (J(+)/UJ(-)	X		
Notes:				
10.0 Comp	ound Identification/Tune and Detection Limit Verification	Yes	No	NA
10.1	Do detection limits meet those required by the project QAPP and were they properly adjusted for dilution factors	W 7		
10.1	and moisture (including adjustment of wet weight aliquot)?	X		
10.2	Was a mass calibration performed daily prior to analysis?	X		
Notes:				
11.0 Data (Completeness	Yes	No	NA
	Is % completeness within the control limits? (Control limit $95\%_{aq}$ and $90\%_{so}$)	X		
11.1	15 % completeness within the control limits. (Control limit >5 % aq tild >6 % so)			1
	•			
11.1 11.1.1 11.1.2	^			

LCMS1 Run Log

Analyst:	вмн	Expiration			
Batch:	2200128B	Date			
Current ICAL Bath:	220012BBCALDW	Date			
20mM Amm Acetate	010-35-8	1/25/2020			
Methanol	2128743	10/1/2024			
Calibration Std	010-34-6	7/24/2020			
ICV Std	010-19-7	6/3/2020			
EIS Mix	010-32-6	7/17/2020			
IIS Mix	010-32-7	7/20/2020			
Name	Data File	Туре	Acq. Date-Time	Comment	Dil.
MeOH Shot	2200128B_01.d	Method Blank	1/28/2020 20:58		1
1201	2200128B_02.d	Cal	1/28/2020 21:08		1
1202	2200128B_03.d	Cal	1/28/2020 21:20		1
1203	2200128B_04.d	Cal	1/28/2020 21:31		7
1204	2200128B_05.d	Cal	1/28/2020 21:42		1
1205	2200128B_06.d	Cal	1/28/2020 21:54		1
1206	2200128B_07.d	Cal	1/28/2020 22:05		1
1207	2200128B_08.d	Cal	1/28/2020 22:16		1
1600	2200128B_09.d	σc	1/28/2020 22:28		н
1450	2200128B_10.d	σc	1/28/2020 22:39		1
1500	2200128B_11.d	Sample	1/28/2020 22:51		1
2005451	2200128B_12.d	Sample	1/28/2020 23:02	676188	H
2005452	2200128B_13.d	ďς	1/28/2020 23:13	676188	1
2005453	2200128B_14.d	ďς	1/28/2020 23:25	676188	Н
22001230601	2200128B_15.d	Sample	1/28/2020 23:36	676188	T
22001241201	2200128B_16.d	Sample	1/28/2020 23:47	676188	۲
22001241202	22001288_17.d	Sample	1/28/2020 23:59	676188	Н
22001241203	2200128B_18.d	Sample	1/29/2020 0:10	676188	7
22001241204	2200128B_19.d	Sample	1/29/2020 0:22	676188	1
22001241205	2200128B_20.d	Sample	1/29/2020 0:33	676188	Т

⊣	Н	⊣	Н	⊣	┥	┛	┙	┥	\vdash	7	Н	┰	7
676188	676188	676188	676188	676188 22001241210	676188 22001241211	CCV	676188	676188	676188	676188			
1/29/2020 0:44 676188	1/29/2020 0:56	1/29/2020 1:07	1/29/2020 1:18	1/29/2020 1:29	1/29/2020 1:41	1/29/2020 1:52	1/29/2020 2:04	1/29/2020 2:15	1/29/2020 2:27	1/29/2020 2:38	1/29/2020 2:49	1/29/2020 3:01	1/29/2020 3:11
Sample	ОС	σc	Sample	Sample	Sample	σc	Sample	Sample	Sample	Sample	ος	Method Blank	Method Blank
2200128B_21.d	2200128B_22.d	2200128B_23.d	2200128B_24.d	2200128B_25.d	2200128B_26.d	2200128B_27.d	2200128B_28.d	2200128B_29.d	2200128B_30.d	2200128B_31.d	2200128B_32.d	2200128B_33.d	2200128B 34.d
22001241206	22001241207	22001241208	22001241209	1400	22001241210	22001241211	22001241212	22001241213	22001241214	22001241215	1400	MeOH Shot	MeOH Shot

6I ORGANICS INITIAL CALIBRATION VERIFICATION

 Report No:
 220012412
 Instrument ID:
 QQQ1

 Analysis Date:
 01/28/2020 22:28
 Lab File ID:
 2200128B_09.d

 Analytical Method:
 EPA 537 Revision 1.1
 Analytical Batch:
 676395

					/		
ANALYTE	UNITS	TRUE	FOUND	% REC	LCL	UCL	Q
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ng/L	50000	42100	84	70	130	
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ng/L	50000	43200	86	70	130	
Perfluorobutanesulfonic acid (PFBS)	ng/L	50000	54700	109	70	130	
Perfluorodecanoic acid (PFDA)	ng/L	50000	55800	112	70	130	
Perfluorododecanoic acid (PFDoA)	ng/L	50000	53700	107	70	130	
Perfluoroheptanoic acid (PFHpA)	ng/L	50000	51700	103	70	130	
Perfluorohexanoic acid (PFHxA)	ng/L	50000	58000	116	70	130	
Perfluorohexanesulfonic acid (PFHxS)	ng/L	50000	53700	107	70	130	
Perfluorononanoic acid (PFNA)	ng/L	50000	65700	(131)	70	130	*
Perfluorooctanoic acid (PFOA)	ng/L	50000	51400	103	70	130	
Perfluorooctanesulfonic acid (PFOS)	ng/L	50000	50300	101	70	130	
Perfluorotetradecanoic acid (PFTeDA)	ng/L	50000	60500	121	70	130	
Perfluorotridecanoic acid (PFTrDA)	ng/L	50000	50700	101	70	130	
Perfluoroundecanoic acid (PFUdA)	ng/L	50000	51800	104	70	130	

7S ORGANICS INSTRUMENT SENSITIVITY CHECK

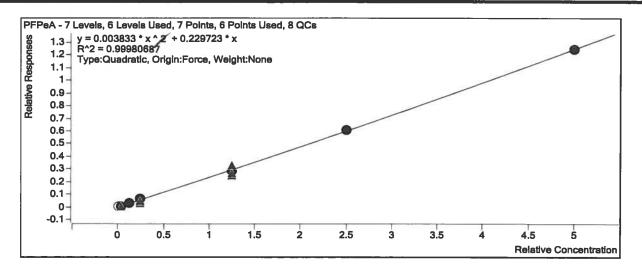
 Report No:
 220012412
 Instrument ID:
 QQQ1

 Analysis Date:
 01/28/2020 22:39
 Lab File ID:
 2200128B_10.d

 Analytical Method:
 EPA 537 Revision 1.1
 Analytical Batch:
 676395

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ng/L	8.33	8.87	106	50	150	
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ng/L	8.33	7.27	87	50	150	
Perfluorobutanesulfonic acid (PFBS)	ng/L	7.40	6.93	94	50	150	
Perfluorodecanoic acid (PFDA)	ng/L	8.33	7.27	87	50	150	
Perfluorododecanoic acid (PFDoA)	ng/L	8.33	8.07	97	50	150	
Perfluoroheptanoic acid (PFHpA)	ng/L	8.33	7.00	84	50	150	
Perfluorohexanoic acid (PFHxA)	ng/L	8.33	8.47	102	50	150	
Perfluorohexanesulfonic acid (PFHxS)	ng/L	7.60	6.53	86	50	150	
Perfluorononanoic acid (PFNA)	ng/L	8.33	10.5	126	50	150	
Perfluorooctanoic acid (PFOA)	ng/L	8.33	7.73	93	50	150	
Perfluorooctanesulfonic acid (PFOS)	ng/L	7.73	9.93	128	50	150	
Perfluorotetradecanoic acid (PFTeDA)	ng/L	8.33	8.27	99	50	150	
Perfluorotridecanoic acid (PFTrDA)	ng/L	8.33	7.73	93	50	150	
Perfluoroundecanoic acid (PFUdA)	ng/L	8.33	8.27	99	50	150	

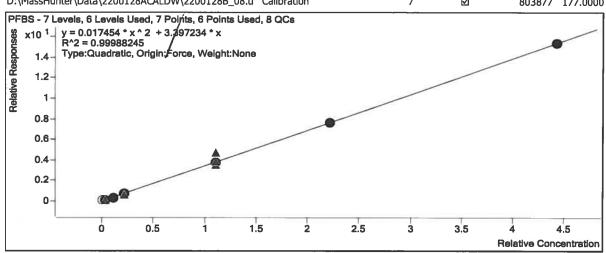
4I ORGANICS INSTRUMENT BLANK


 Report No:
 220012412
 Instrument ID:
 QQQ1

 Analysis Date:
 01/28/2020 22:51
 Lab File ID:
 2200128B_11.d

 Analytical Method:
 EPA 537 Revision 1.1
 Analytical Batch:
 676395

ANALYTE	UNITS	RESULT	Q .,	/ DL	LOD	LOQ	#
Perfluorobutanesulfonic acid	ng/L	4.00	U	1.47	4.00	10.0	
Perfluorodecanoic acid	ng/L	4.00	U	1.65	4.00	10.0	
Perfluorododecanoic acid	ng/L	4.00	U	2.45	4.00	10.0	
Perfluoroheptanoic acid	ng/L	4.00	U	1.85	4.00	10.0	
Perfluorohexanesulfonic acid	ng/L	4.00	U	1.64	4.00	10.0	
Perfluorohexanoic acid	ng/L	4.00	U	1.94	4.00	10.0	
Perfluorononanoic acid	ng/L	4.00	U	1.68	4.00	10.0	
Perfluorooctanesulfonic acid	ng/L	4.00	U	1.70	4.00	10.0	
Perfluorooctanoic acid	ng/L	4.00	U	1.80	4.00	10.0	
Perfluorotridecanoic acid	ng/L	4.00	U	2.56	4.00	10.0	
Perfluoroundecanoic acid	ng/L	4.00	U	1.86	4.00	10.0	

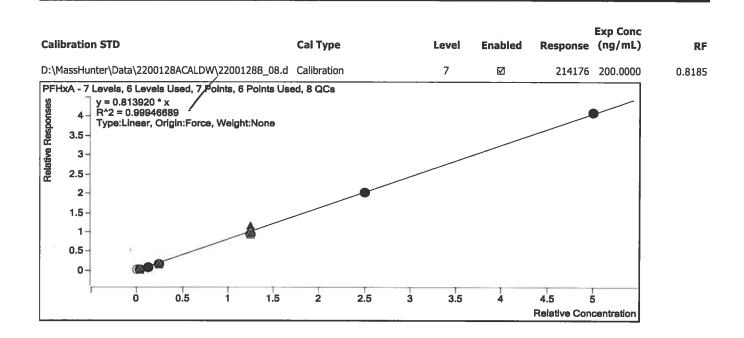

^{* -} Result greater than 1/2 LOQ

Target Compound

PFBS

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200128ACALDW\2200128B_02.d	Calibration	1		1860	0.4425	3.0476
$\label{lem:decomposition} \mbox{D:\MassHunter\Data\2200128ACALDW\2200128B_03.d}$	Calibration	2		4521	1.1100	2.8482
D:\MassHunter\Data\2200128ACALDW\2200128B_04.d	Calibration	3	Ø	20093	4.4250	2.8218
D:\MassHunter\Data\2200128ACALDW\2200128B_05.d	Calibration	4	Ø	35212	8.8500	3.0599
D:\MassHunter\Data\2200128ACALDW\2200128B_06.d	Calibration	5	Ø	194070	44.2500	3.3508
D:\MassHunter\Data\2200128ACALDW\2200128B_07.d	Calibration	6		412851	88.5000	3.4700
D:\MassHunter\Data\2200128ACALDW\2200128B_08.d	Calibration	7	\square	803877	177.0000	3.4713

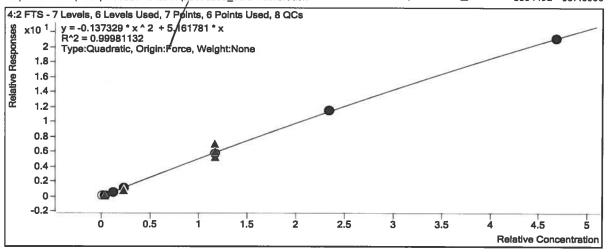
Target Compound


PFHxA

Calibration STD Cal Type

Level Enabled R

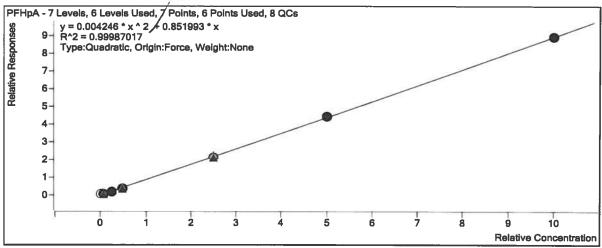
Exp Conc Response (ng/mL)


RF

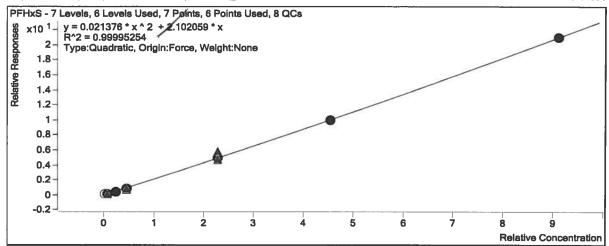
Target Compound

4:2 FTS

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200128ACALDW\2200128B_02.d	Calibration	1		2607	0.4675	4.0433
D:\MassHunter\Data\2200128ACALDW\2200128B_03.d	Calibration	2	☑	6792	1.1700	4.0590
D:\MassHunter\Data\2200128ACALDW\2200128B_04.d	Calibration	3	ゼ	31185	4.6700	4.1497
D:\MassHunter\Data\Z200128ACALDW\Z200128B_05.d	Calibration	4	\square	57129	9.3500	4.6991
D:\MassHunter\Data\Z200128ACALDW\Z200128B_06.d	Calibration	5	\square	298535	46.7500	4.8789
D:\MassHunter\Data\2200128ACALDW\2200128B_07.d	Calibration	6	✓	615938	93.5000	4.9000
D:\MassHunter\Data\2200128ACALDW\2200128B_08.d	Calibration	7	Ø	1104492	187.0000	4.5143

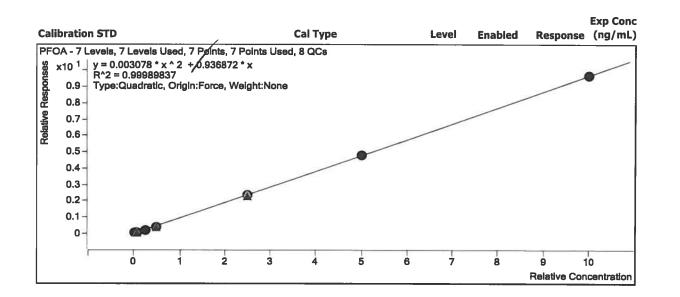


D:\MassHunter\Data\2200128ACALDW\2200128B_08.d Calibration 7	Calibration STD			Cal Type	Lev	el	Enabled	Response	Exp Conc (ng/mL)	RF
Section Sect	D:\MassHunter\Da	ta\2200128ACALD	W\2200128B_08.d	Calibration	7		Ø	660	20.0000	0.0174
R ² = 0.00000000 Type:Average of Response Factors, Origin:Ignore, Weight: None Avg. RF RSD = 9.485285			ed, 7 Points, 7 Point	s Used, 7 QCs						
1.8- 1.7- 1.6- 1.5-	% x10 -2 y = 0.0 R^2 =									
1.8- 1.7- 1.6- 1.5-	Type:			gnore, Welght:						
1.8- 1.7- 1.6- 1.5-	8 2 2									
1.8- 1.7- 1.6- 1.5-	Matrix 2			8						
1.7- 1.6- 1.5-	<u>2</u> 1.9			I						
1.6-	1.8-									
1.5-	1.7-			8						
	1.6-									
	1.5-									
1.47										
	-	J. J. J.	T. T. T		1 1	- 1	1 1	T T	1 1	
-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 Relative Concentration	-90	-80 -70 -60	-50 -40 -30	-20 -10 0 10	20 30	40	50 60			


Target Compound

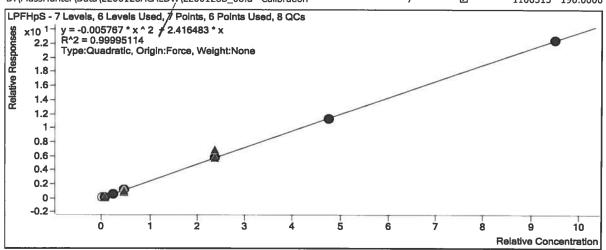
PFHpA

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200128ACALDW\2200128B_02.d	Calibration	1		809	0.5000	0.8035
D:\MassHunter\Data\2200128ACALDW\2200128B_03.d	Calibration	2	Ø	1875	1.2500	0.7199
D:\MassHunter\Data\2200128ACALDW\2200128B_04.d	Calibration	3	☑	8670	5.0000	0.7506
D:\MassHunter\Data\2200128ACALDW\2200128B_05.d	Calibration	4	Ø	14984	10.0000	0.7572
D:\MassHunter\Data\2200128ACALDW\2200128B_06.d	Calibration	5	\square	79074	50.0000	0.8430
D:\MassHunter\Data\2200128ACALDW\2200128B_07.d	Calibration	6	☑	174803	100.0000	0.8829
D:\MassHunter\Data\2200128ACALDW\2200128B_08.d	Calibration	7	\square	338755	200.0000	0.8936


Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200128ACALDW\2200128B_05.d	Calibration	4	Ø	34026	9.1200	1.8855
D:\MassHunter\Data\2200128ACALDW\2200128B_06.d	Calibration	5		185286	45.6000	2.1660
D:\MassHunter\Data\2200128ACALDW\2200128B_07.d	Calibration	- 6	\square	397134	91.2000	2.1995
D:\MassHunter\Data\2200128ACALDW\2200128B_08.d	Calibration	7	\square	794117	182.4000	2.2968

Target Compound

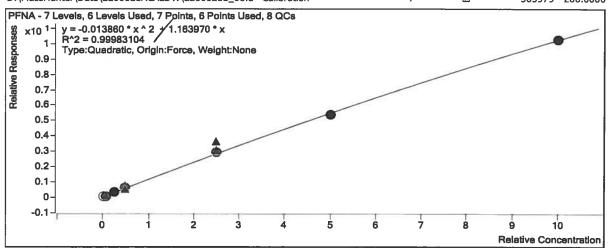
ADONA


Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200128ACALDW\2200128B_02.d	Calibration	1		2008	0.5000	1.9950
D:\MassHunter\Data\2200128ACALDW\2200128B_03.d	Calibration	2	☑	5460	1.2500	2.0968
D:\MassHunter\Data\2200128ACALDW\2200128B_04.d	Calibration	3	☑	25766	5.0000	2.2307
D:\MassHunter\Data\2200128ACALDW\2200128B_05.d	Calibration	4	\square	45549	10.0000	2.3019
D:\MassHunter\Data\2200128ACALDW\2200128B_06.d	Calibration	5	Ø	235732	50.0000	2.5132
D:\MassHunter\Data\2200128ACALDW\2200128B_07.d	Calibration	6	\square	494510	100.0000	2.4978
D:\MassHunter\Data\2200128ACALDW\2200128B_08.d	Calibration	7		960371	200.0000	2.5332

Target Compound

LPFHpS

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
	The state of the s				(3//	
D:\MassHunter\Data\2200128ACALDW\2200128B_02.d	Calibration	1		1828	0.4750	1.9976
D:\MassHunter\Data\2200128ACALDW\2200128B_03.d	Calibration	2	☑	5443	1.1900	2.2187
D:\MassHunter\Data\2200128ACALDW\2200128B_04.d	Calibration	3	✓	23253	4.7500	2.3859
D:\MassHunter\Data\2200128ACALDW\2200128B_05.d	Calibration	4	☑	40954	9.5000	2.4838
D:\MassHunter\Data\2200128ACALDW\2200128B_06.d	Calibration	5	Ø	243919	47.5000	2.4457
D:\MassHunter\Data\2200128ACALDW\2200128B_07.d	Calibration	6	☑	545243	95.0000	2.3719
D:\MassHunter\Data\2200128ACALDW\2200128B_08.d	Calibration	7		1106515	190.0000	2.3632



Target Compound

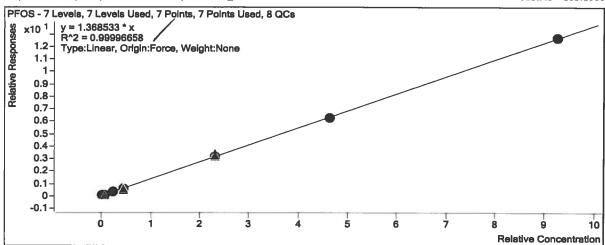
PFNA

RF

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200128ACALDW\2200128B_06.d	Calibration	5	Ø	122125	50.0000	1.1633
D:\MassHunter\Data\2200128ACALDW\2200128B_07.d	Calibration	6	Ø	261501	100.0000	1.0807
D:\MassHunter\Data\2200128ACALDW\2200128B_08.d	Calibration	7	☑	505979	200.0000	1.0266

Fytra	chad	ISTD
LAUG	LLCL	

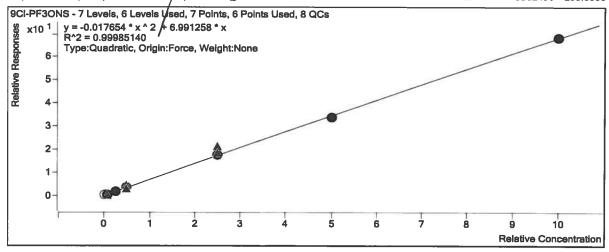
M4PFOS


Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200128ACALDW\2200128B_02.d	Calibration	1	Ø	38523	20.0000	1926.1542
D:\MassHunter\Data\Z200128ACALDW\Z200128B_03.d	Calibration	2	\square	41234	20.0000	2061.7225
D:\MassHunter\Data\Z200128ACALDW\Z200128B_04.d	Calibration	3	\square	41036	20.0000	2051.8093
D:\MassHunter\Data\2200128ACALDW\2200128B_05.d	Calibration	4		34713	20.0000	1735.6691
D:\MassHunter\Data\2200128ACALDW\2200128B_06.d	Calibration	5	\square	41993	20.0000	2099.6252
D:\MassHunter\Data\2200128ACALDW\2200128B_07.d	Calibration	6	\square	48396	20.0000	2419.7939
D:\MassHunter\Data\2200128ACALDW\2200128B_08.d	Calibration	7	☑	49288	20.0000	2464.3868

Target Compound

PFOS

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200128ACALDW\2200128B_02.d	Calibration	1	\square	1287	0.4628	1.4438
D:\MassHunter\Data\2200128ACALDW\2200128B_03.d	Calibration	2	\square	3627	1.1600	1.5165
D:\MassHunter\Data\2200128ACALDW\2200128B_04.d	Calibration	3		12948	4.6280	1.3635
D:\MassHunter\Data\2200128ACALDW\2200128B_05.d	Calibration	4	\square	21974	9.2550	1.3679
D:\MassHunter\Data\2200128ACALDW\2200128B_06.d	Calibration	5	\square	134285	46.2800	1.3820

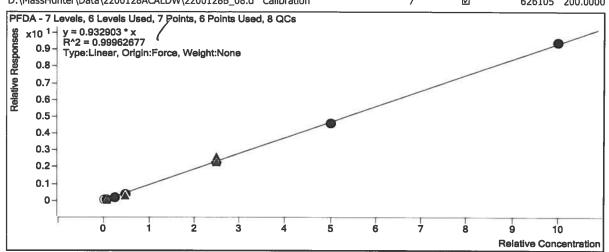


Target Compound

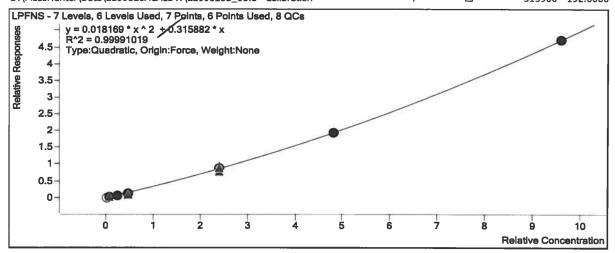
9CI-PF3ONS

					Exp Conc	
Calibration STD	Cal Type	Level	Enabled	Response	(ng/mL)	RF
D:\MassHunter\Data\2200128ACALDW\2200128B_02.d	Calibration	1		6216	0.5000	6.4544
$\label{lem:decomposition} D:\mbox{\sc MassHunter}\mbox{\sc Data}\mbox{\sc 2200128ACALDW}\mbox{\sc 2200128B_03.d}$	Calibration	2	☑	16309	1.2500	6.3285
D:\MassHunter\Data\2200128ACALDW\2200128B_04.d	Calibration	3		77402	5.0000	7.5448
D:\MassHunter\Data\2200128ACALDW\2200128B_05.d	Calibration	4	₫	133457	10.0000	7.6891
D:\MassHunter\Data\2200128ACALDW\2200128B_06.d	Calibration	5	☑	747975	50.0000	7.1248
D:\MassHunter\Data\2200128ACALDW\2200128B_07.d	Calibration	6		1650396	100.0000	6.8204
D:\MassHunter\Data\2200128ACALDW\2200128B_08.d	Calibration	7	☑	3362490	200.0000	6.8222

Target Compound

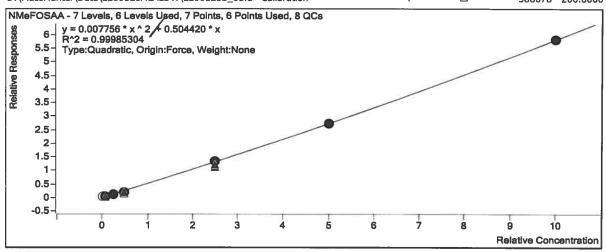

8:2 FTS

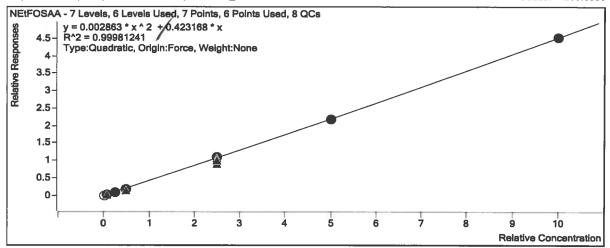
Calibration STD	Cal Type		Level	Enabled	Response	Exp Conc (ng/mL)	
D:\MassHunter\Data\2200128ACALDW\2200128B_08.d	Calibration		7		1212137	192.0000	2.5618
8:2 FTS - 7 Levels, 6 Levels Used, 7 Points, 6 Points Uses, 7 Levels, 6 Levels Used, 7 Points, 6 Points Uses, 7 Levels, 6 Points Uses, 7 Points, 6 Points Uses, 9 Points, 9							
0 1 2 3	4	5 (5 7	8	9	10	
					Relative Cor	centration	


Target Compound

PFDA

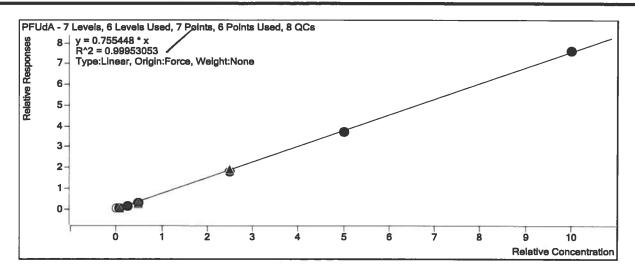
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200128ACALDW\2200128B_02.d	Calibration	1		1568	0.5000	0.8541
D:\MassHunter\Data\2200128ACALDW\2200128B_03.d	Calibration	2	☑	3599	1.2500	0.7588
D:\MassHunter\Data\2200128ACALDW\2200128B_04.d	Calibration	3	☑	16173	5.0000	0.7438
D:\MassHunter\Data\2200128ACALDW\2200128B_05.d	Calibration	4	✓	27864	10.0000	0.7392
D:\MassHunter\Data\2200128ACALDW\2200128B_06.d	Calibration	5	$\overline{\omega}$	159084	50.0000	0.9174
D:\MassHunter\Data\2200128ACALDW\2200128B_07.d	Calibration	6	\square	330602	100.0000	0.9149
D:\MassHunter\Data\2200128ACALDW\2200128B_08.d	Calibration	7		626105	200.0000	0.9390

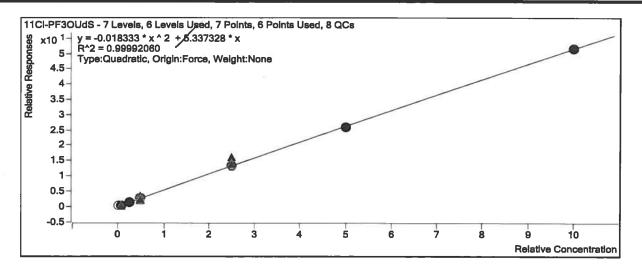

D:\MassHunter\Data\2200128ACALDW\2200128B_06.d	Calibration	5	Ø	61200	48.0000	0.3676
D:\MassHunter\Data\2200128ACALDW\2200128B_07.d	Calibration	6	Ø	139278	96.0000	0.4015
D:\MassHunter\Data\2200128ACALDW\2200128B 08.d	Calibration	7	M	313906	192,0000	0 4904


Target Compound

NMeFOSAA

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200128ACALDW\2200128B_02.d	Calibration	1		797	0.5000	0.4344
D:\MassHunter\Data\2200128ACALDW\2200128B_03.d	Calibration	2	Ø	1880	1.2500	0.3963
D:\MassHunter\Data\2200128ACALDW\2200128B_04.d	Calibration	3	Ø	8315	5.0000	0.3824
D:\MassHunter\Data\2200128ACALDW\2200128B_05.d	Calibration	4	☑	15722	10.0000	0.4171
D:\MassHunter\Data\2200128ACALDW\2200128B_06.d	Calibration	5		92595	50.0000	0.5340
D:\MassHunter\Data\2200128ACALDW\2200128B_07.d	Calibration	6	Ø	195773	100.0000	0.5418
D:\MassHunter\Data\2200128ACALDW\2200128B_08.d	Calibration	7	Ø	388078	200.0000	0.5820

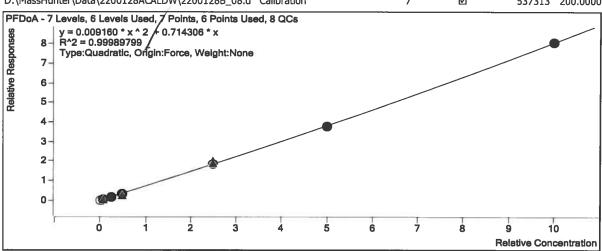

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
$\label{lem:decomposition} \mbox{D:\MassHunter\Data\2200128ACALDW\2200128B_05.d}$	Calibration	4	\square	12585	10.0000	0.3339
D:\MassHunter\Data\2200128ACALDW\2200128B_06.d	Calibration	5	\square	75346	50.0000	0.4345
D:\MassHunter\Data\2200128ACALDW\2200128B_07.d	Calibration	6	\square	158343	100.0000	0.4382
D:\MassHunter\Data\2200128ACALDW\2200128B_08.d	Calibration	7	Ø	301157	200.0000	0.4517



Target Compound

PFUdA

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF	
Cambracion 515	cai Type	revei	Lilabicu	Kesponse	(lig/lill)	KF	
D:\MassHunter\Data\2200128ACALDW\2200128B_02.d	Calibration	1		1208	0.5000	0.6584	
$\hbox{\tt D:\backslash MassHunter\backslash Data\backslash 2200128ACALDW\backslash 2200128B_03.d}$	Calibration	2	☑	3018	1.2500	0.6362	
D:\MassHunter\Data\2200128ACALDW\2200128B_04.d	Calibration	3	☑	12971	5.0000	0.5965	
D:\MassHunter\Data\2200128ACALDW\2200128B_05.d	Calibration	4	☑	22102	10.0000	0.5863	
D:\MassHunter\Data\2200128ACALDW\2200128B_06.d	Calibration	5	Ø	124479	50.0000	0.7178	
D:\MassHunter\Data\2200128ACALDW\2200128B_07.d	Calibration	6	✓	270623	100.0000	0.7489	
D:\MassHunter\Data\2200128ACALDW\2200128B_08.d	Calibration	7	☑	506733	200.0000	0.7600	



Target Compound

PFDoA

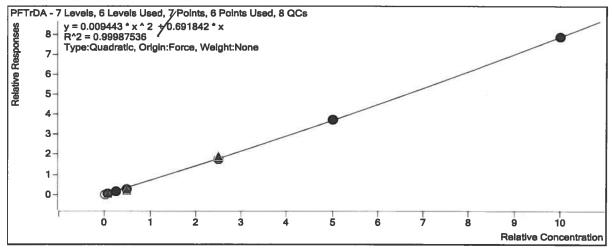
*					Exp Conc	
Calibration STD	Cal Type	Level	Enabled	Response	(ng/mL)	RF
$\label{lem:decomposition} \textbf{D:} \\ \textbf{MassHunter} \\ \textbf{Data} \\ \textbf{2200128ACALDW} \\ \textbf{2200128B_02.d} \\$	Calibration	1		992	0.5000	0.5404
$\label{lem:decomposition} \mbox{D:\MassHunter\Data\2200128ACALDW\2200128B_03.d}$	Calibration	2	\square	2607	1.2500	0.5495
D:\MassHunter\Data\2200128ACALDW\2200128B_04.d	Calibration	3	Ø	12026	5.0000	0.5531
D:\MassHunter\Data\2200128ACALDW\2200128B_05.d	Calibration	4	\square	23103	10.0000	0.6129
D:\MassHunter\Data\2200128ACALDW\2200128B_06.d	Calibration	5		129305	50.0000	0.7456
D:\MassHunter\Data\2200128ACALDW\2200128B_07.d	Calibration	6	abla	274562	100.0000	0.7598
D:\MassHunter\Data\2200128ACALDW\2200128B_08.d	Calibration	7	\square	537313	200.0000	0.8058

Target Compound

PFTrDA

Calibration STD

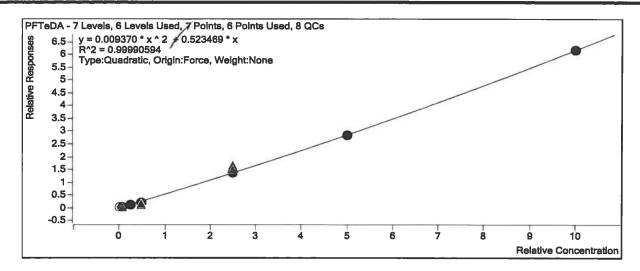
Cal Type


Level Enabled

ed Res

Exp Conc Response (ng/mL)

RF


D:\MassHunter\Data\2200128ACALDW\2200128B_02.d	Calibration	1		854	0.5000	0.4653
D:\MassHunter\Data\2200128ACALDW\2200128B_03.d	Calibration	2	Ø	2597	1.2500	0.5475
D:\MassHunter\Data\2200128ACALDW\2200128B_04.d	Calibration	3	Ø	11858	5.0000	0.5453
D:\MassHunter\Data\2200128ACALDW\2200128B_05.d	Calibration	4	Ø	21740	10.0000	0.5767
D:\MassHunter\Data\2200128ACALDW\2200128B_06.d	Calibration	5		123183	50.0000	0.7103
D:\MassHunter\Data\2200128ACALDW\2200128B_07.d	Calibration	6		268859	100.0000	0.7440
D:\MassHunter\Data\2200128ACALDW\2200128B_08.d	Calibration	7	☑	523929	200.0000	0.7858

Target Compound

PFTeDA

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200128ACALDW\2200128B_02.d	Calibration	1		905	0.5000	0.4933
D:\MassHunter\Data\2200128ACALDW\2200128B_03.d	Calibration	2	☑	2025	1.2500	0.4269
D:\MassHunter\Data\2200128ACALDW\2200128B_04.d	Calibration	3	Ø	9407	5.0000	0.4326
D:\MassHunter\Data\2200128ACALDW\2200128B_05.d	Calibration	4	\square	16540	10.0000	0.4388
D:\MassHunter\Data\2200128ACALDW\2200128B_06.d	Calibration	5		94774	50.0000	0.5465
D:\MassHunter\Data\2200128ACALDW\2200128B_07.d	Calibration	6		206930	100.0000	0.5726
D:\MassHunter\Data\2200128ACALDW\2200128B_08.d	Calibration	7	☑	411338	200.0000	0.6169

7E ORGANICS CALIBRATION VERIFICATION

 Report No:
 220012412
 Instrument ID:
 QQQ1

 Analysis Date:
 01/29/2020 01:52
 Lab File ID:
 2200128B_27.d

Analytical Batch:

676395

 ANALYTE
 UNITS
 TRUE
 FOUND
 % REC
 LCL
 UCL

 N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)
 ng/L
 50000
 49700
 99
 70
 130

 N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)
 ng/L
 50000
 46500
 93
 70
 130

 Perfluorobutanesulfonic acid (PFBS)
 ng/L
 44300
 41800
 94
 70
 130

N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ng/L	50000	49700	99	70	130	
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ng/L	50000	46500	93	70	130	
Perfluorobutanesulfonic acid (PFBS)	ng/L	44300	41800	94	70	130	
Perfluorodecanoic acid (PFDA)	ng/L	50000	49500	99	70	130	
Perfluorododecanoic acid (PFDoA)	ng/L	50000	54700	109	70	130	
Perfluoroheptanoic acid (PFHpA)	ng/L	50000	49600	99	70	130	
Perfluorohexanoic acid (PFHxA)	ng/L	50000	46900	94	70	130	
Perfluorohexanesulfonic acid (PFHxS)	ng/L	45600	43600	96	70	130	
Perfluorononanoic acid (PFNA)	ng/L	50000	53500	107	70	130	
Perfluorooctanoic acid (PFOA)	ng/L	50000	48500	97	70	130	
Perfluorooctanesulfonic acid (PFOS)	ng/L	46300	46100	100	70	130	
Perfluorotetradecanoic acid (PFTeDA)	ng/L	50000	55100	110	70	130	
Perfluorotridecanoic acid (PFTrDA)	ng/L	50000	54300	109	70	130	
Perfluoroundecanoic acid (PFUdA)	ng/L	50000	50800	102	70	130	

Analytical Method:

EPA 537 Revision 1.1

Q

7E ORGANICS CALIBRATION VERIFICATION

 Report No:
 220012412
 Instrument ID:
 QQQ1

 Analysis Date:
 01/29/2020 02:49
 Lab File ID:
 2200128B_32.d

 Analytical Method:
 EPA 537 Revision 1.1
 Analytical Batch:
 676395

ANALYTE	UNITS	TRUE	FOUND	% REC /	LCL	UCL	Q
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ng/L	50000	47000	94	70	130	
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ng/L	50000	46600	93	70	130	
Perfluorobutanesulfonic acid (PFBS)	ng/L	44300	45000	102	70	130	
Perfluorodecanoic acid (PFDA)	ng/L	50000	49000	98	70	130	
Perfluorododecanoic acid (PFDoA)	ng/L	50000	52000	104	70	130	
Perfluoroheptanoic acid (PFHpA)	ng/L	50000	49300	99	70	130	
Perfluorohexanoic acid (PFHxA)	ng/L	50000	48000	96	70	130	
Perfluorohexanesulfonic acid (PFHxS)	ng/L	45600	44600	98	70	130	
Perfluorononanoic acid (PFNA)	ng/L	50000	54200	108	70	130	
Perfluorooctanoic acid (PFOA)	ng/L	50000	48500	97	70	130	
Perfluorooctanesulfonic acid (PFOS)	ng/L	46300	48200	104	70	130	
Perfluorotetradecanoic acid (PFTeDA)	ng/L	50000	55100	110	70	130	
Perfluorotridecanoic acid (PFTrDA)	ng/L	50000	54000	108	70	130	
Perfluoroundecanoic acid (PFUdA)	ng/L	50000	50900	102	70	130	

8F INTERNAL STANDARD AREA SUMMARY

Report No:	220012412	Standard ID:	1205 (ICAL Midpoint)							
Analyst:	ВМН	Instrument ID:	QQQ1							
Analysis Date:	01/28/20 21:54	Lab File ID:	2200128B_06.d							
Analytical Method:	EPA 537 Rev. 1.1	Analytical Batch:	676395							

		M2PFOA		M2PFHxA	1	M4PFOS	i	M2PFDA	4
		Area		Area		Area		Area	
STANDARD		37519		52354		41993		69366	
CLIENT SAMPLE ID	GCAL SAMP ID	/	/	#	/	#	/	#	
MB2005451	2005451	41197		55308		37554		74975	
LCS2005452	2005452	40545		53721		36379		77915	
LCSD2005453	2005453	39812	\Box	55299		24299		74079	
Potable-01	22001241201	42605	$\neg \gamma$	57177		40186		81907	
Potable-02	22001241202	44243	\Box	55525		41307		81714	
Potable-03	22001241203	42775	\Box	56129		38008		79761	
Potable-04	22001241204	41722	\Box	56653		39841		83336	
Potable-04-FD	22001241205	37604		56945		36761		80345	
Potable-05	22001241206	42112		55984		38402		80349	
Potable-05MS	22001241207	40921	\neg	54879		37198		73402	П
Potable-05MSD	22001241208	39048	\Box	52914		35493		76878	П
Potable-06	22001241209	40647	\Box	54429		42697		80410	П
Potable-07	22001241210	43043		54477		37927		79540	П
Potable-08	22001241211	41747	T	55450		41622	П	77870	
Potable-09	22001241212	41205	ヿ	55590		37379		81400	П
Potable-10	22001241213	39235	コ	50918		36136		76943	П
Potable-11	22001241214	40632	コ	54233		39251		71329	П
FRB-012220	22001241215	37225		51732		33394		76203	П

AREA UPPER LIMIT = +50% of internal standard area AREA LOWER LIMIT = -50% of internal standard area

Column used to flag values outside QC limits

^{*} Value outside QC limits

LCMS1 Run Log

		oniý 11 11 11 11 11 11 11 11 11 11 11 11 11
	Comment MeOH SHOT/INSTRUMENT IDLE MeOH SHOT/INSTRUMENT IDLE MeOH SHOT/INSTRUMENT IDLE	MeOH SHOT/INSTRUMENT IDLE RR for low PFDS conc for DOD curve only MeOH SHOT/INSTRUMENT IDLE MeOH SHOT/INSTRUMENT IDLE MeOH SHOT/INSTRUMENT IDLE
	Acq. Date-Time 2/5/2020 13:19 2/5/2020 13:30 2/5/2020 13:41 2/5/2020 14:03 2/5/2020 14:14 2/5/2020 14:26 2/5/2020 14:37 2/5/2020 14:48 2/5/2020 14:48	2/5/2020 15:28 2/5/2020 15:38 2/5/2020 15:30 2/5/2020 16:11 2/5/2020 16:22 2/5/2020 16:22 2/5/2020 16:34 2/5/2020 16:34 2/5/2020 16:34
Expiration Date Date 2/7/2020 10/1/2024 9/5/2020 7/29/2020 8/3/2020	Type MeOH Shot MeOH Shot Cal Cal Cal Cal Cal Cal Cal	MeOH Shot Cal MeOH Shot QC MeOH Shot QC MeOH Shot QC Sample MeOH Shot
BMH LCMS1 2200205B 2200205BCAL/2200205BCALDW 010-38-6 2128763 010-38-5 010-36-4 010-38-2 010-37-5	Data File 2200205B_01.d 2200205B_02.d 2200205B_03.d 2200205B_04.d 2200205B_05.d 2200205B_06.d 2200205B_06.d 2200205B_09.d 2200205B_09.d 2200205B_10.d	2200205B_11.d 2200205B_12.d 2200205B_13.d 2200205B_14.d 2200205B_15.d 2200205B_16.d 2200205B_17.d 2200205B_18.d 2200205B_19.d
Analyst: Instrument: Batch: Current ICAL Bath: 20mM Amm Acetate Methanol Calibration Std ICV Std EIS Mix	Name MeOH Shot MeOH Shot 1201 1202 1203 1203 1206 1205	MeOH Shot 1202 MeOH Shot 1600 MeOH Shot 1450 1500 MeOH Shot

Н	ı ←	Н	н	T	H	1	T	1	₽	1	1	1	1	1	₽	₽	1 J	П	1	1	П	1	П	5	1	1	1	Н	Н	Н	1	
Meoh Shot/Instrument Idle 676405 DW	676405 DW	676405 DW	676405 DW	676405 DW	676405 DW	676405 DW	676405 DW	676405 DW	676405 DW		676405 DW		MeOH SHOT/INSTRUMENT IDLE	676392	676392	676392	676392	676392	676392	676392	676392		674594	674594	674594		676610					
2/5/2020 17:40 2/5/2020 17:50	2/5/2020 18:02	2/5/2020 18:13	2/5/2020 18:24	2/5/2020 18:36	2/5/2020 18:47	2/5/2020 18:58	2/5/2020 19:10	2/5/2020 19:21	2/5/2020 19:32	2/5/2020 19:44	2/5/2020 19:55	2/5/2020 20:06	2/5/2020 20:18	2/5/2020 20:29	2/5/2020 20:40	2/5/2020 20:51	2/5/2020 21:03	2/5/2020 21:14	2/5/2020 21:25	2/5/2020 21:36	2/5/2020 21:48	2/5/2020 21:59	2/5/2020 22:10	2/5/2020 22:22	2/5/2020 22:33	2/5/2020 22:44	2/5/2020 22:56	2/5/2020 23:07	2/5/2020 23:18	2/5/2020 23:30	2/5/2020 23:41	
MeOH Shot Sample	Sample	Sample	Sample	Sample	Sample	Sample	σc	σc	Sample	σc	Sample	Sample	Sample	Sample	Sample	αc	MeOH Shot	Sample	σc	σc	Sample	Sample	Sample	Sample	Sample	σς	Sample	Sample	Sample	σc	Sample	
2200205B_21.d 2200205B_22.d	2200205B_23.d	2200205B_24.d	2200205B_25.d	2200205B_26.d	2200205B_27.d	2200205B_28.d	2200205B_29.d	2200205B_30.d	2200205B_31.d	2200205B_32.d	2200205B_33.d	2200205B_34.d	2200205B_35.d	2200205B_36.d	2200205B_37.d	2200205B_38.d	2200205B_39.d	2200205B_40.d	2200205B_41.d	2200205B_42.d	2200205B_43.d	2200205B_44.d	2200205B_45.d	2200205B_46.d	2200205B_47.d	2200205B_48.d	2200205B_49.d	2200205B_50.d	2200205B_51.d	2200205B_52.d	2200205B_53.d	
MeOH Shot 22001241215	22001241201	22001241202	22001241203	22001241204	22001241205	22001241206	22001241207	22001241208	22001241209	1400	22001241210	22001241211	22001241212	22001241213	22001241214	1400	MeOH Shot	2006259	2006260	2006261	22001283704	22001283701	22001283702	22001283703 x5	22001283703	1400	22001020204	22001020205	22001020206	1400	2007156	

ਜਿ ਜ ਜ ਜ	T 22 FF	1 -		ਜ ਜ ਜ ਜ	ਜਿਜਜਿਜ	ਦ ਜ ਜ ਜ ਜ	निस्स्स्त
676610 676610 676610 676610 676610	676610 676610 676610	676610 676610 676610	676610 676610 676610	676610 676610 676610	676854 676854 676854	676854 676854 676854 676854	676854 676854 676854 676854 676854
2/6/2020 0:04 2/6/2020 0:15 2/6/2020 0:26 2/6/2020 0:38 2/6/2020 0:49	2/6/2020 1:00 2/6/2020 1:12 2/6/2020 1:23 2/6/2020 1:35	2/6/2020 1:45 2/6/2020 1:57 2/6/2020 2:08 2/6/2020 2:19	2/6/2020 2:31 2/6/2020 2:31 2/6/2020 2:42 2/6/2020 2:53	2/6/2020 3:05 2/6/2020 3:16 2/6/2020 3:28 2/6/2020 3:39	2/6/2020 3:50 2/6/2020 4:01 2/6/2020 4:12 2/6/2020 4:24	2/6/2020 4:35 2/6/2020 4:46 2/6/2020 4:58 2/6/2020 5:09 2/6/2020 5:21	2/6/2020 5:31 2/6/2020 5:31 2/6/2020 5:54 2/6/2020 6:05 2/6/2020 6:17
QC Sample Sample Sample	Sample Sample Sample MeOH Shot	Sample Sample Sample	Sample Sample Sample	Sample Sample Sample MeOH Shot	Sample Sample QC QC	Sample Sample Sample MeOH Shot	Sample Sample Sample Sample Sample
2200205B_55.d 2200205B_56.d 2200205B_57.d 2200205B_58.d 2200205B_59.d	22002058_60.d 22002058_61.d 22002058_62.d 22002058_63.d	22002058_64.d 22002058_65.d 22002058_66.d	2200205B_68.d 2200205B_68.d 2200205B_69.d 2200205B_70.d	22002058_71.d 22002058_72.d 22002058_73.d 22002058_74.d	22002058_75.d 22002058_75.d 22002058_77.d 22002058_78.d	2200205B_/9.d 2200205B_80.d 2200205B_81.d 2200205B_82.d 2200205B_83.d	22002058_84.d 22002058_85.d 22002058_86.d 22002058_87.d 22002058_88.d
2007158 22001283911 22001283912 22001313002 22001383901	22001283902 22001283903 x5 22001283903 MeOH Shot	22001283904 22001283905 22001283906	22001283907 22001283908 22001283909	22001283910 22001313001 2000x DIA 22001313001 200x DIA MeOH Shot	1400 2008241 2008242 2008243	22002041504 22002041601 22002041602 22002041603 MeOH Shot	22002041401 22002041402 22002041403 22002041404 22002041405

6) ORGANICS INITIAL CALIBRATION VERIFICATION

 Report No:
 220012412
 Instrument ID:
 QQQ1

 Analysis Date:
 02/05/2020 16:22
 Lab File ID:
 2200205B_15.d

 Analytical Method:
 EPA 537 Revision 1.1
 Analytical Batch:
 676962

ANALYTE	UNITS	TRUE	FOUND	% REC	LCL	UCL	Q
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ng/L	50000	42500	85	70	130	
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ng/L	50000	43900	88	70	130	
Perfluorobutanesulfonic acid (PFBS)	ng/L	50000	44000	88	70	130	
Perfluorodecanoic acid (PFDA)	ng/L	50000	54600	109	70	130	
Perfluorododecanoic acid (PFDoA)	ng/L	50000	48900	98	70	130	
Perfluoroheptanoic acid (PFHpA)	ng/L	50000	55100	110	70	130	
Perfluorohexanoic acid (PFHxA)	ng/L	50000	51800	104	70	130	
Perfluorohexanesulfonic acid (PFHxS)	ng/L	50000	55200	110	70	130	
Perfluorononanoic acid (PFNA)	ng/L	50000	56700	113	70	130	
Perfluorooctanoic acid (PFOA)	ng/L	50000	54100	108	70	130	
Perfluorooctanesulfonic acid (PFOS)	ng/L	50000	48400	97	70	130	
Perfluorotetradecanoic acid (PFTeDA)	ng/L	50000	52200	104	70	130	
Perfluorotridecanoic acid (PFTrDA)	ng/L	50000	45000	90	70	130	
Perfluoroundecanoic acid (PFUdA)	ng/L	50000	49300	99	70	130	

7S ORGANICS INSTRUMENT SENSITIVITY CHECK

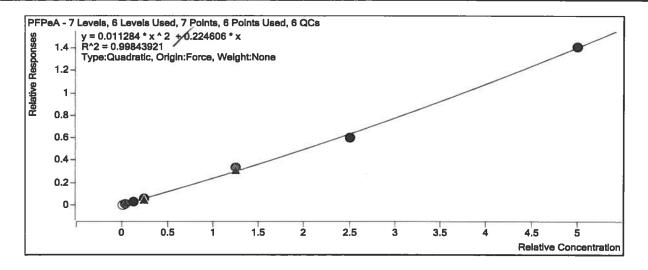
 Report No:
 220012412
 Instrument ID:
 QQQ1

 Analysis Date:
 02/05/2020 16:44
 Lab File ID:
 2200205B_17.d

 Analytical Method:
 EPA 537 Revision 1.1
 Analytical Batch:
 676962

ANALYTE	UNITS	TRUE	FOUND	% REC	LCL	UCL	Q			
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ng/L	8.33	8.47	101	50	150				
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ng/L	8.33	9.60	115	50	150				
Perfluorobutanesulfonic acid (PFBS)	ng/L	7.40	7.07	96	50	150				
Perfluorodecanoic acid (PFDA)	ng/L	8.33	9.73	117	50	150				
Perfluorododecanoic acid (PFDoA)	ng/L	8.33	8.33	100	50	150				
Perfluoroheptanoic acid (PFHpA)	ng/L	8.33	10.3	123	50	150				
Perfluorohexanoic acid (PFHxA)	ng/L	8.33	8.60	103	50	150				
Perfluorohexanesulfonic acid (PFHxS)	ng/L	7.60	8.07	106	50	150				
Perfluorononanoic acid (PFNA)	ng/L	8.33	8.73	104	50	150				
Perfluorooctanoic acid (PFOA)	ng/L	8.33	8.93	107	50	150				
Perfluorooctanesulfonic acid (PFOS)	ng/L	7.73	8.20	106	50	150				
Perfluorotetradecanoic acid (PFTeDA)	ng/L	8.33	8.80	105	50	150				
Perfluorotridecanoic acid (PFTrDA)	ng/L	8.33	8.07	97	50	150				
Perfluoroundecanoic acid (PFUdA)	ng/L	8.33	9.00	108	50	150				

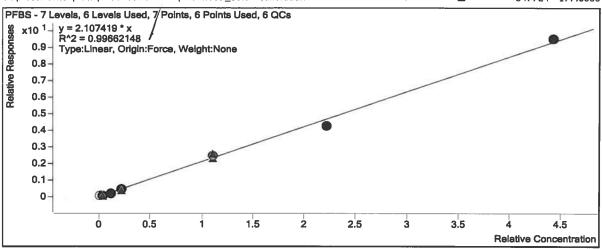
4I ORGANICS INSTRUMENT BLANK


 Report No:
 220012412
 Instrument ID:
 QQQ1

 Analysis Date:
 02/05/2020 16:56
 Lab File ID:
 2200205B_18.d

 Analytical Method:
 EPA 537 Revision 1.1
 Analytical Batch:
 676962

ANALYTE	UNITS	RESULT	Q	DL	LOD	LOQ	#
Perfluorobutanesulfonic acid	ng/L	4.00	U	1.47	4.00	10.0	
Perfluorodecanoic acid	ng/L	4.00	U	1.65	4.00	10.0	
Perfluorododecanoic acid	ng/L	4.00	U	2.45	4.00	10.0	
Perfluoroheptanoic acid	ng/L	4.00	U	1.85	4.00	10.0	
Perfluorohexanesulfonic acid	ng/L	4.00	U	1.64	4.00	10.0	
Perfluorohexanoic acid	ng/L	4.00	U	1.94	4.00	10.0	
Perfluorononanoic acid	ng/L	4.00	U	1.68	4.00	10.0	
Perfluorooctanesulfonic acid	ng/L	4.00	U	1.70	4.00	10.0	
Perfluorooctanoic acid	ng/L	4.00	U	1.80	4.00	10.0	
Perfluorotridecanoic acid	ng/L	4.00	U	2.56	4.00	10.0	
Perfluoroundecanoic acid	ng/L	4.00	U	1.86	4.00	10.0	


^{* -} Result greater than 1/2 LOQ

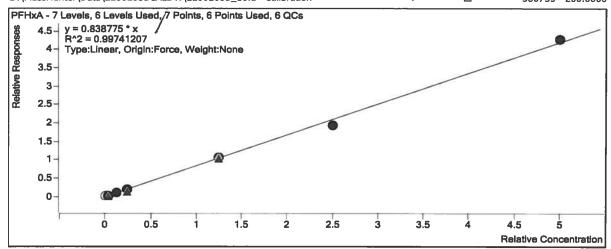
Target Compound

PFBS

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200205BCALDW\2200205B_04.d	Calibration	1		1662	0.4425	1.6841
D:\MassHunter\Data\2200205BCALDW\2200205B_05.d	Calibration	2	Ø	4491	1.1100	1.8187
D:\MassHunter\Data\2200205BCALDW\2200205B_06.d	Calibration	3	Ø	19089	4.4250	1.8870
D:\MassHunter\Data\2200205BCALDW\2200205B_07.d	Calibration	4	☑	38761	8.8500	1.9615
D:\MassHunter\Data\2200205BCALDW\2200205B_08.d	Calibration	5	☑	206877	44.2500	2.1945
D:\MassHunter\Data\2200205BCALDW\2200205B_09.d	Calibration	6	\square	427180	88.5000	1.9158
D:\MassHunter\Data\2200205BCALDW\2200205B_10.d	Calibration	7	☑	847724	177.0000	2.1504

Target Compound

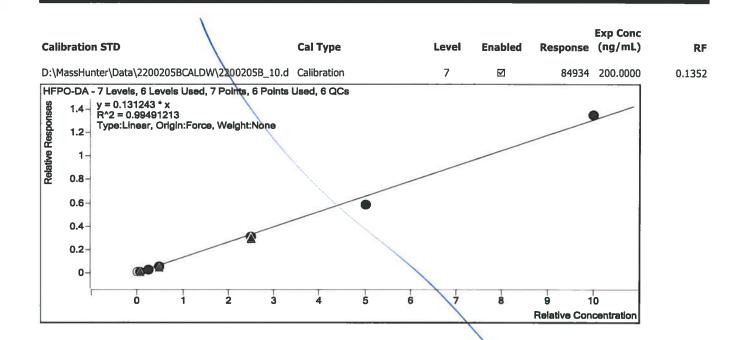
4:2 FTS


Exp Conc
Calibration STD Cal Type Level Enabled Response (ng/mL) RF

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
$\hbox{\tt D:\backslash MassHunter\backslash Data\backslash 2200205BCALDW\backslash 2200205B_07.d}$	Calibration	4	\square	89316	40.0000	2232.8932
D:\MassHunter\Data\2200205BCALDW\2200205B_08.d	Calibration	5	\square	85217	40.0000	2130.4270
D:\MassHunter\Data\2200205BCALDW\2200205B_09.d	Calibration	6	\square	100782	40.0000	2519.5618
D:\MassHunter\Data\2200205BCALDW\2200205B_10.d	Calibration	7		89088	40.0000	2227.2092

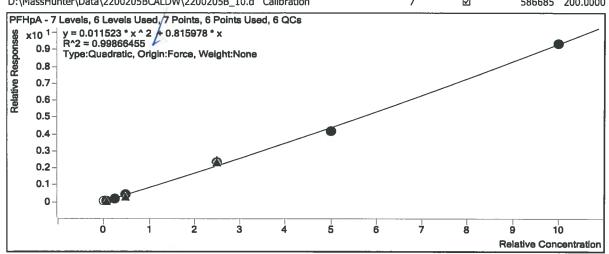
Target Compound

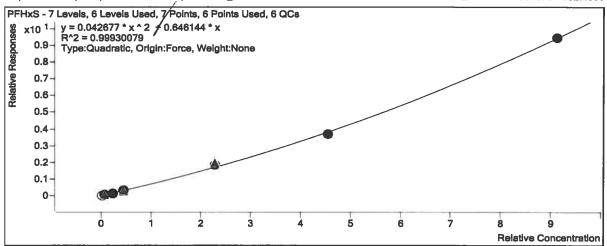
PFHxA


Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200205BCALDW\2200205B_04.d	Calibration	1		858	0.5000	0.7695
D:\MassHunter\Data\2200205BCALDW\2200205B_05.d	Calibration	2	☑	2284	1.2500	0.8214
D:\MassHunter\Data\2200205BCALDW\2200205B_06.d	Calibration	3	Ø	8960	5.0000	0.7839
D:\MassHunter\Data\2200205BCALDW\2200205B_07.d	Calibration	4	Ø	17159	10.0000	0.7685
D:\MassHunter\Data\2200205BCALDW\2200205B_08.d	Calibration	5	☑	90965	50.0000	0.8540
D:\MassHunter\Data\2200205BCALDW\2200205B_09.d	Calibration	6	☑	194461	100.0000	0.7718
D:\MassHunter\Data\2200205BCALDW\2200205B_10.d	Calibration	7	☑	380755	200.0000	0.8548

Target Compound

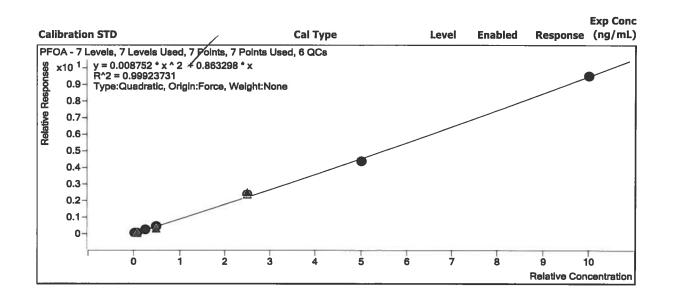
LPFPeS


					F C	
Calibration STD	Cal Type	Level	Enabled	Response	(ng/mL)	RF
D:\MassHunter\Data\2200205BCALDW\2200205B_04.d	Calibration	1		901	0.4700	0.6005
D:\MassHunter\Data\2200205BCALDW\2200205B_05.d	Calibration	2	Ø	2591	1.1800	0.6795
D:\MassHunter\Data\2200205BCALDW\2200205B_06.d	Calibration	3	Ø	10690	4.7000	0.6904
D:\MassHunter\Data\2200205BCALDW\2200205B_07.d	Calibration	4	\square	22083	9.4000	0.7256


Target Compound

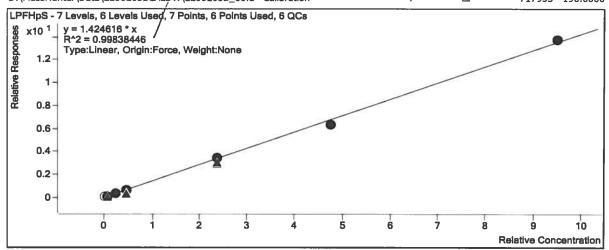
PFHpA

				-	Exp Conc	
Calibration STD	Cal Type	Levei	Enabled	Response	(ng/mL)	RF
D:\MassHunter\Data\2200205BCALDW\2200205B_04.d	Calibration	1		1376	0.5000	0.8620
D:\MassHunter\Data\2200205BCALDW\2200205B_05.d	Calibration	2		3130	1.2500	0.7750
D:\MassHunter\Data\2200205BCALDW\2200205B_06.d	Calibration	3	☑	12407	5.0000	0.7532
D:\MassHunter\Data\2200205BCALDW\2200205B_07.d	Calibration	4	\square	27065	10.0000	0.8360
D:\MassHunter\Data\2200205BCALDW\2200205B_08.d	Calibration	5	☑	147233	50.0000	0.9385
D:\MassHunter\Data\2200205BCALDW\2200205B_09.d	Calibration	6	\square	299032	100.0000	0.8385
D:\MassHunter\Data\2200205BCALDW\2200205B_10.d	Calibration	7	\square	586685	200.0000	0.9341


Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200205BCALDW\2200205B_07.d	Calibration	4	☑	19390	9.1200	0.6567
D:\MassHunter\Data\2200205BCALDW\2200205B_08.d	Calibration	5	☑	117211	45.6000	0.8192
D:\MassHunter\Data\2200205BCALDW\2200205B_09.d	Calibration	6	☑	264343	91.2000	0.8128
D:\MassHunter\Data\2200205BCALDW\2200205B_10.d	Calibration	7	☑	594370	182.4000	1.0377

Target Compound

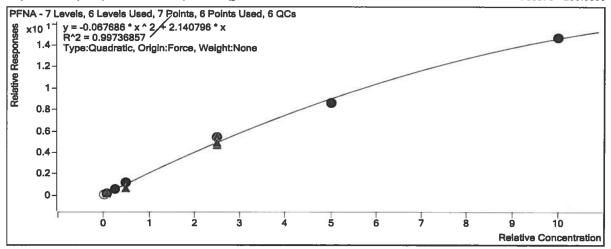
ADONA


Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200205BCALDW\2200205B_04.d	Calibration	1		2784	0.5000	1.7437
D:\MassHunter\Data\2200205BCALDW\2200205B_05.d	Calibration	2	\square	7421	1.2500	1.8372
D:\MassHunter\Data\2200205BCALDW\2200205B_06.d	Calibration	3	☑	34085	5.0000	2.0693
D:\MassHunter\Data\2200205BCALDW\2200205B_07.d	Calibration	4	Ø	70474	10.0000	2.1767
D:\MassHunter\Data\2200205BCALDW\2200205B_08.d	Calibration	5	☑	356438	50.0000	2.2720
D:\MassHunter\Data\2200205BCALDW\2200205B_09.d	Calibration	6	Ø	726898	100.0000	2.0383
D:\MassHunter\Data\2200205BCALDW\2200205B_10.d	Calibration	7	☑	1369376	200.0000	2.1803

Target Compound

LPFHpS

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200205BCALDW\2200205B_04.d	Calibration	1		1103	0.4750	1.3528
D:\MassHunter\Data\2200205BCALDW\2200205B_05.d	Calibration	2	☑	2469	1.1900	1.2834
D:\MassHunter\Data\2200205BCALDW\2200205B_06.d	Calibration	3	☑	9994	4.7500	1.3342
D:\MassHunter\Data\2200205BCALDW\2200205B_07.d	Calibration	4	✓	21482	9.5000	1.3818
D:\MassHunter\Data\2200205BCALDW\2200205B_08.d	Calibration	5	☑	125808	47.5000	1.4336
D:\MassHunter\Data\2200205BCALDW\2200205B_09.d	Calibration	6	☑	299515	95.0000	1.3348
D:\MassHunter\Data\2200205BCALpW\2200205B_10.d	Calibration	7	\square	717953	190.0000	1.4467



Target Compound

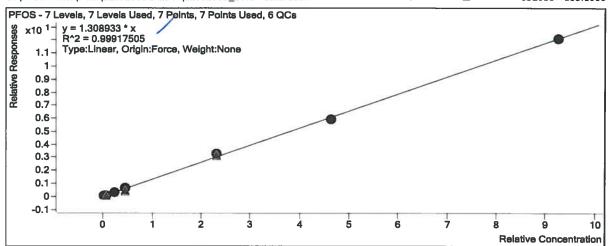
PFNA

RF

					Exp Conc	
Calibration STD	Cal Type	Leve	l Enabled	Response		RF
D:\MassHunter\Data\2200205BCALDW\2200205B_08.d	Calibration	5	\square	200345	50.0000	2.1688
D:\MassHunter\Data\2200205BCALDW\2200205B_09.d	Calibration	6		406712	100.0000	1.7218
D:\MassHunter\Data\2200205BCALDW\2200205B_10.d	Calibration	7		768378	200.0000	1.4709

Extracted	ISTD
-----------	------

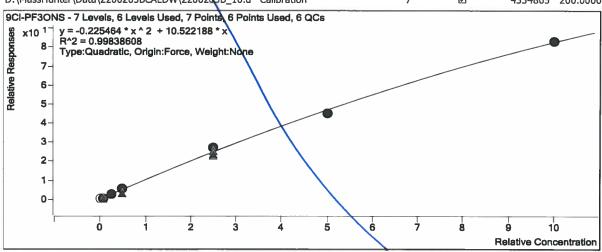
M4PFOS


Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200205BCALDW\2200205B_04.d	Calibration	1	☑	34321	20.0000	1716.0723
D:\MassHunter\Data\2200205BCALDW\2200205B_05.d	Calibration	2	☑	32331	20.0000	1616.5576
D:\MassHunter\Data\2200205BCALDW\2200205B_06.d	Calibration	3	Ø	31539	20.0000	1576.9688
D:\MassHunter\Data\2200205BCALDW\2200205B_07.d	Calibration	4	☑	32728	20.0000	1636.4192
D:\MassHunter\Data\2200205BCALDW\2200205B_08.d	Calibration	5	☑	36950	20.0000	1847.5048
D:\MassHunter\Data\Z200205BCALDW\Z200205B_09.d	Calibration	6	☑	47242	20.0000	2362.0769
D:\MassHunter\Data\2200205BCALDW\2200205B_10.d	Calibration	7	\square	52239	20.0000	2611.9660
Toward Commound	BEOC					

Target Compound

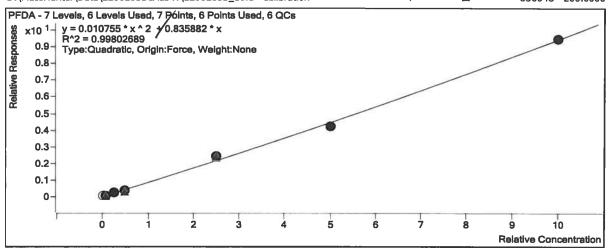
PFOS

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200205BCALDW\2200205B_04.d	Calibration	1	✓	1146	0.4628	1.4430
D:\MassHunter\Data\2200205BCALDW\2200205B_05.d	Calibration	2	Ø	2639	1.1600	1.4073
D:\MassHunter\Data\2200205BCALDW\2200205B_06.d	Calibration	3	☑	10131	4.6280	1.3882
D:\MassHunter\Data\2200205BCALDW\2200205B_07.d	Calibration	4	ゼ	20793	9.2550	1.3730
D:\MassHunter\Data\2200205BCALDW\2200205B_08.d	Calibration	5	☑	122639	46.2800	1.4343


D:\MassHunter\Data\2200205BCALDW\2200205B_09.d	Calibration	6	Ø	280473	92.5500	1.2830
D:\MassHunter\Data\2200205BCALDW\2200205B_10.d	Calibration	7		632080	185.1000	1.3074

Target Compound

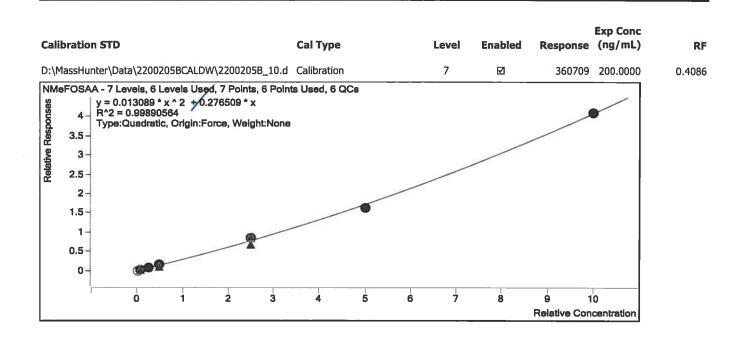
9CI-PF3ONS


Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200205BCALDW\2200205B_04.d	Calibration	1		8668	0.5000	10.1024
D:\MassHunter\Data\2200205BCALDW\2200205B_05.d	Calibration	2	\square	21973	1.2500	10.8740
D:\MassHunter\Data\2200205BCALDW\2200205B_06.d	Calibration	3	\square	92967	5.0000	11.7906
D:\MassHunter\Data\2200205BCALDW\2200205B_07.d	Calibration	4	☑	190404	10.0000	11.6354
D:\MassHunter\Data\2200205BCALDW\2200205B_08.d	Calibration	5	\square	999688	50.0000	10.8220
D:\MassHunter\Data\2200205BCALDW\2200205B_09.d	Calibration	6		2135598	100.0000	9.0412
D:\MassHunter\Data\2200205BCALDW\2200205B_10.d	Calibration	7	\square	4334865	200.0000	8.2981

Target Compound

8:2 FTS

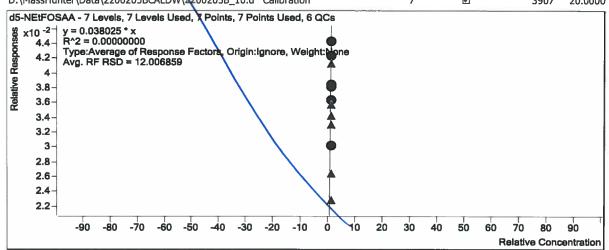
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200205BCALDW\2200205B_07.d	Calibration	4	Ø	44078	10.0000	0.8266
D:\MassHunter\Data\2200205BCALDW\2200205B_08.d	Calibration	5	Ø	235018	50.0000	0.9777
D:\MassHunter\Data\2200205BCALDW\2200205B_09.d	Calibration	6	☑	463291	100.0000	0.8464
D:\MassHunter\Data\2200205BCALDW\2200205B_10.d	Calibration	7	\square	836048	200.0000	0.9470

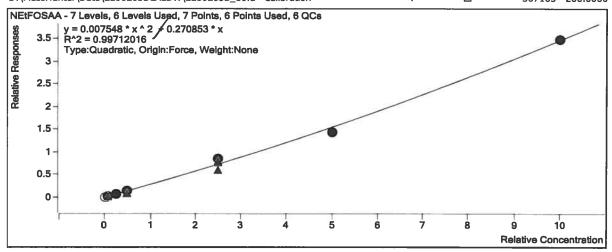

M2PFDA

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200205BCALDW\2200205B_04.d	Calibration	1	Ø	107710	20.0000	5385.4958
D:\MassHunter\Data\2200205BCALDW\2200205B_05.d	Calibration	2	Ø	103256	20.0000	5162.8059
D:\MassHunter\Data\2200205BCALDW\2200205B_06.d	Calibration	3		102550	20.0000	5127.5084
D:\MassHunter\Data\2200205BCALDW\2200205B_07.d	Calibration	4	Ø	106643	20.0000	5332.1707
D:\MassHunter\Data\2200205BCALDW\2200205B_08.d	Calibration	5	\square	96149	20.0000	4807.4506
D:\MassHunter\Data\2200205BCALDW\2200205B_09.d	Calibration	6		109474	20.0000	5473.6949
D:\MassHunter\Data\2200205BCALDW\2200205B_10.d	Calibration	7	$\overline{\mathbf{Z}}$	88280	20.0000	4413.9954

Target Compound

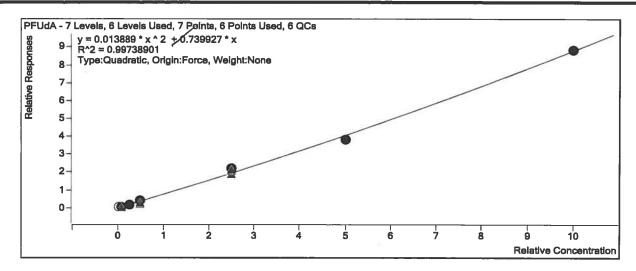
LPFNS

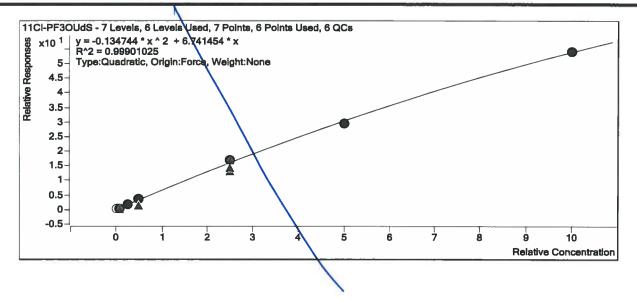

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200205BCALDW\2200205B_04.d	Calibration	1		407	0.4800	0.1576
D:\MassHunter\Data\2200205BCALDW\2200205B_05.d	Calibration	2	☑	1143	1.2000	0.1845
D:\MassHunter\Data\2200205BCALDW\2200205B_06.d	Calibration	3	\square	5193	4.8000	0.2110
D:\MassHunter\Data\2200205BCALDW\2200205B_07.d	Calibration	4	\square	10519	9.6000	0.2055


Instrument ISTD

d5-NEtFOSAA

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200205BCALDW\2200205B_04.d	Calibration	1	\square	3916	20.0000	0.0364
D:\MassHunter\Data\2200205BCALDW\2200205B_05.d	Calibration	2	ゼ	3938	20.0000	0.0381
D:\MassHunter\Data\2200205BCALDW\2200205B_06.d	Calibration	3	☑	3944	20.0000	0.0385
D:\MassHunter\Data\2200205BCALDW\2200205B_07.d	Calibration	4	☑	3220	20.0000	0.0302
D:\MassHunter\Data\2200205BCALDW\2200205B_08.d	Calibration	5		4078	20.0000	0.0424
D:\MassHunter\Data\2200205BCALDW\2200205B_09.d	Calibration	6	☑	3980	20.0000	0.0364
D:\MassHunter\Data\2200205BCALDW\\200205B_10.d	Calibration	7		3907	20.0000	0.0443


Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200205BCALDW\2200205B_07.d	Calibration	4	Ø	14965	10.0000	0.2807
D:\MassHunter\Data\2200205BCALDW\2200205B_08.d	Calibration	5		81856	50.0000	0.3405
D:\MassHunter\Data\2200205BCALDW\2200205B_09.d	Calibration	6	☑	158364	100.0000	0.2893
D:\MassHunter\Data\2200205BCALDW\2200205B 10.d	Calibration	7	Ø	307163	200.0000	0.3479



Target Compound

PFUdA

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200205BCALDW\2200205B_04.d	Calibration	1		1700	0.5000	0.6312
D:\MassHunter\Data\2200205BCALDW\2200205B_05.d	Calibration	2	☑	4508	1.2500	0.6985
D:\MassHunter\Data\Z200205BCALDW\Z200205B_06.d	Calibration	3	₫	19907	5.0000	0.7765
D:\MassHunter\Data\2200205BCALDW\2200205B_07.d	Calibration	4	Ø	41335	10.0000	0.7752
D:\MassHunter\Data\2200205BCALDW\2200205B_08.d	Calibration	5	☑	215694	50.0000	0.8973
D:\MassHunter\Data\2200205BCALDW\2200205B_09.d	Calibration	6		417468	100.0000	0.7627
D:\MassHunter\Data\2200205BCALDW\2200205B_10.d	Calibration	7	Ø	779276	200.0000	0.8827

Target Compound

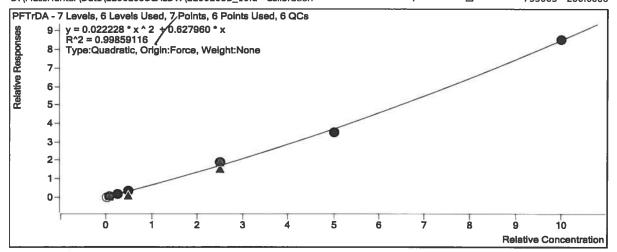
PFDoA

Calibration STD	Cal Type	Levei	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200205BCALDW\2200205B_04.d	Calibration	1		1835	0.5000	0.6815
D:\MassHunter\Data\2200205BCALDW\2200205B_05.d	Calibration	2		4160	1.2500	0.6446
D:\MassHunter\Data\2200205BCALDW\2200205B_06.d	Calibration	3	☑	17563	5.0000	0.6850
D:\MassHunter\Data\2200205BCALDW\2200205B_07.d	Calibration	4	Ø	38543	10.0000	0.7228
D:\MassHunter\Data\2200205BCALDW\2200205B_08.d	Calibration	5	☑	201774	50.0000	0.8394
D:\MassHunter\Data\2200205BCALDW\2200205B_09.d	Calibration	6	\square	407133	100.0000	0.7438
D:\MassHunter\Data\2200205BCALDW\2200205B_10.d	Calibration	7	Z	761876	200.0000	0.8630

Target Compound

PFTrDA

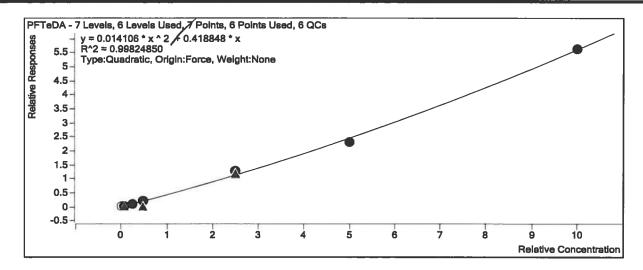
Calibration STD


Cal Type

Level Enabled

Exp Conc Response (ng/mL)

RF


D:\MassHunter\Data\2200205BCALDW\2200205B_04.d	Calibration	1		1439	0.5000	0.5345
D:\MassHunter\Data\2200205BCALDW\2200205B_05.d	Calibration	2	\square	4237	1.2500	0.6565
D:\MassHunter\Data\2200205BCALDW\2200205B_06.d	Calibration	3	☑	17112	5.0000	0.6674
D:\MassHunter\Data\2200205BCALDW\2200205B_07.d	Calibration	4	ゼ	35679	10.0000	0.6691
D:\MassHunter\Data\2200205BCALDW\2200205B_08.d	Calibration	5	\square	185172	50.0000	0.7704
D:\MassHunter\Data\2200205BCALDW\2200205B_09.d	Calibration	6	\square	386331	100.0000	0.7058
D:\MassHunter\Data\2200205BCALDW\2200205B 10.d	Calibration	7	☑	753065	200.0000	0.8530

Target Compound

PFTeDA

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200205BCALDW\2200205B_04.d	Calibration	1		1087	0.5000	0.4035
D:\MassHunter\Data\2200205BCALDW\2200205B_05.d	Calibration	2	☑	2811	1.2500	0.4356
D:\MassHunter\Data\2200205BCALDW\2200205B_06.d	Calibration	3	Ø	10777	5.0000	0.4204
D:\MassHunter\Data\2200205BCALDW\2200205B_07.d	Calibration	4	☑	23258	10.0000	0.4362
D:\MassHunter\Data\2200205BCALDW\2200205B_08.d	Calibration	5	\square	124598	50.0000	0.5184
D:\MassHunter\Data\2200205BCALDW\2200205B_09.d	Calibration	6		254581	100.0000	0.4651
D:\MassHunter\Data\2200205BCALDW\2200205B_10.d	Calibration	7	Ø	496080	200.0000	0.5619

7E ORGANICS CALIBRATION VERIFICATION

Report No:	220012412	Instrument ID:	QQQ1
Analysis Date:	02/05/2020 19:44	Lab File ID:	2200205B_32.d
Analytical Method:	EPA 537 Revision 1.1	Analytical Batch:	676962

ANALYTE	UNITS	TRUE	FOUND	% REC	LCL	UCL	Q
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ng/L	50000	53600	107	70	130	
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ng/L	50000	54800	110	70	130	
Perfluorobutanesulfonic acid (PFBS)	ng/L	44300	48300	109	70	130	
Perfluorodecanoic acid (PFDA)	ng/L	50000	54700	109	70	130	П
Perfluorododecanoic acid (PFDoA)	ng/L	50000	51100	102	70	130	
Perfluoroheptanoic acid (PFHpA)	ng/L	50000	58000	116	70	130	
Perfluorohexanoic acid (PFHxA)	ng/L	50000	51900	104	70	130	
Perfluorohexanesulfonic acid (PFHxS)	ng/L	45600	53200	117	70	130	
Perfluorononanoic acid (PFNA)	ng/L	50000	47900	96	70	130	
Perfluorooctanoic acid (PFOA)	ng/L	50000	55700	111	70	130	
Perfluorooctanesulfonic acid (PFOS)	ng/L	46300	48200	104	70	130	
Perfluorotetradecanoic acid (PFTeDA)	ng/L	50000	54600	109	70	130	
Perfluorotridecanoic acid (PFTrDA)	ng/L	50000	54700	109	70	130	
Perfluoroundecanoic acid (PFUdA)	ng/L	50000	53900	108	70	130	

7E ORGANICS CALIBRATION VERIFICATION

 Report No:
 220012412
 Instrument ID:
 QQQ1

 Analysis Date:
 02/05/2020 20:51
 Lab File ID:
 2200205B_38.d

 Analytical Method:
 EPA 537 Revision 1.1
 Analytical Batch:
 676962

ANALYTE	UNITS	TRUE	FOUND	% REC	LCL	UCL	Q
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ng/L	50000	54200	108	70	130	
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ng/L	50000	56400	113	70	130	
Perfluorobutanesulfonic acid (PFBS)	ng/L	44300	49300	111	70	130	
Perfluorodecanoic acid (PFDA)	ng/L	50000	56100	112	70	130	
Perfluorododecanoic acid (PFDoA)	ng/L	50000	51600	103	70	130	
Perfluoroheptanoic acid (PFHpA)	ng/L	50000	55800	112	70	130	
Perfluorohexanoic acid (PFHxA)	ng/L	50000	49300	99	70	130	
Perfluorohexanesulfonic acid (PFHxS)	ng/L	45600	52100	114	70	130	
Perfluorononanoic acid (PFNA)	ng/L	50000	50500	101	70	130	
Perfluorooctanoic acid (PFOA)	ng/L	50000	56300	113	70	130	
Perfluorooctanesulfonic acid (PFOS)	ng/L	46300	49200	106	70	130	
Perfluorotetradecanoic acid (PFTeDA)	ng/L	50000	53700	107	70	130	
Perfluorotridecanoic acid (PFTrDA)	ng/L	50000	54500	109	70	130	
Perfluoroundecanoic acid (PFUdA)	ng/L	50000	55100	110	70	130	

8F INTERNAL STANDARD AREA SUMMARY

Report No: 220012412 Standard ID: 1205 (ICAL Midpoint) Analyst: вмн Instrument ID: QQQ1 Analysis Date: 02/05/20 14:37 Lab File ID: 2200205B_08.d Analytical Method: EPA 537 Rev. 1.1 Analytical Batch: 676962

		M2PFOA		M2PFHx/	4	M4PFOS	3	M2PFDA	4
		Area		Area		Area		Area	
STANDARD		62754		85217		36950		96149	/
CLIENT SAMPLE ID	GCAL SAMP ID	/	#	1	#	/	#		#
Potable-01RE	22001241201RE	74777		107057		48601		118848	П
Potable-02RE	22001241202RE	70693		108099		46825		123526	Г
Potable-03RE	22001241203RE	77144		109665		46219		118298	
Potable-04RE	22001241204RE	81194		114464		48845		129528	
Potable-04-FDRE	22001241205RE	83869		115648		53114		138812	\vdash
Potable-05RE	22001241206RE	82843		111070		49158		129198	
Potable-05MSRE	22001241207RE	76975		110314		50251		125229	
Potable-05MSDRE	22001241208RE	92801		131865		60772	٠	143942	
Potable-06RE	22001241209RE	69224		100842		43312		111241	
Potable-07RE	22001241210RE	76422		107152		48440		119046	T
Potable-08RE	22001241211RE	70862		103167		45277		117975	Т
Potable-09RE	22001241212RE	76272		107888		44005		99873	П
Potable-10RE	22001241213RE	77569		105881		48006		117824	T
Potable-11RE	22001241214RE	75318		107427		47709		123632	
FRB-012220RE	22001241215RE	76216		110330		48832		118384	П

AREA UPPER LIMIT = +50% of internal standard area AREA LOWER LIMIT = -50% of internal standard area

Column used to flag values outside QC limits

* Value outside QC limits

164.50/0

2C
WATER SEMIVOLATILE SURROGATE RECOVERY

Analytical Method: EPA 537 Rev. 1.1 Report No: 220012412 MG PPDA , ds-NE+FOSAA TOT SMC2 # SMC3 GCAL Sample ID SMC1 # Client Sample ID SMC4 # SMC5 # SMC6 # OUT Potable-01 Potable-01RE Potable-02 77, Potable-02RE Potable-03 Potable-03RE Potable-04 Potable-04RE Potable-04-FD Potable-04-FDRE 11. Potable-05 12 . Potable-05RE Potable-05MS 13 . Potable-05MSRE Potable-05MSD Potable-05MSDRE Potable-06 Potable-06RE Potable-07 -73 Potable-07RE 21. Potable-08 Potable-08RE Potable-09 23 . Potable-09RE 24 . 25 . Potable-10 26 . Potable-10RE Potable-11 27. Potable-11RE 28 . FRB-012220 29. FRB-012220RE 30. 31. MB2005451 LCS2005452 32 . LCSD2005453 33. MB2006526 34. LCS2006527 35.

FORM II SV-1

LCSD2006528

36 .

4B SEMIVOLATILE METHOD BLANK SUMMARY

Report No:	220012412		Method Blank ID:	2005451	2005451				
Matrix:	Water		Instrument ID:	QQQ1					
Sample Amt:	125 mL		Lab File ID:	2200128B_12.	d				
Injection Vol.:	1.0	(μL)	GC Column:	ACC-C18-30M	ID	2.1	(mm)		
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1	Analyst:	вмн			
Prep Date:	01/27/20		Analysis Date:	01/28/20	Time:	2302			
Prep Batch:	676188		Analytical Batch:	676395					
Prep Method:	EPA 537 Rev. 1.1		Analytical Method:	EPA 537 Rev.	1.1				

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD

		GCAL	LAB	DATE	TIME
	CLIENT SAMPLE ID	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
1.	LCS2005452	2005452	2200128B_13.d	01/28/20	2313
2	LCSD2005453	2005453	2200128B_14.d	01/28/20	2325
3	Potable-01	22001241201	2200128B_16.d	01/28/20	2347
4.	Potable-02	22001241202	2200128B_17.d	01/28/20	2359
5 .	Potable-03	22001241203	2200128B_18.d	01/29/20	0010
6.	Potable-04	22001241204	2200128B_19.d	01/29/20	0022
7.	Potable-04-FD	22001241205	2200128B_20.d	01/29/20	0033
8.	Potable-05	22001241206	2200128B_21.d	01/29/20	0044
9.	Potable-05MS	22001241207	2200128B_22.d	01/29/20	0056
10 .	Potable-05MSD	22001241208	2200128B_23.d	01/29/20	0107
11.	Potable-06	22001241209	2200128B_24.d	01/29/20	0118
12 .	Potable-07	22001241210	2200128B_25.d	01/29/20	0129
13 .	Potable-08	22001241211	2200128B_26.d	01/29/20	0141
14.	Potable-09	22001241212	2200128B_28.d	01/29/20	0204
15 .	Potable-10	22001241213	2200128B_29.d	01/29/20	0215
16 .	Potable-11	22001241214	2200128B_30.d	01/29/20	0227
17 .	FRB-012220	22001241215	2200128B_31.d	01/29/20	0238

Report No:	220012412		Client Sample	ID:	MB2005451			
Collect Date:	NA Time: NA		GCAL Sample	D:	2005451			
Matrix:	Water % Moisture: NA		Instrument ID:		QQQ1			
Sample Amt:	125 mL		Lab File ID:		2200128B_12.d			
Injection Vol.:	1.0	(µL)	GC Column:		ACC-C18-30M	ID <u>2</u>	.1 (mm)	
Prep Final Vol.:	1000	(µL)	Dilution Facto	ri	1 /	Analyst: B	вмн	
Prep Date:	01/27/20		Analysis Date	:	01/28/20	Time: 2	302	
Prep Batch:	676188		Analytical Bate	ch:	676395			
Prep Method:	EPA 537 Rev. 1.1		Analytical Met	hod:	EPA 537 Rev. 1.1			
CONCENTRATION UNITS: ng/L								
CAS	ANALYTE		RESULT	Q	/ DL	LOD	LOQ	
375-73-5	Perfluorobutanesulfonic acid		4.00	U	1.47	4.00	10.0	

CAS	ANALYTE	RESULT	Q /	DL	LOD	LOQ
375-73-5	Perfluorobutanesulfonic acid	4.00	U	1.47	4.00	10.0
335-76-2	Perfluorodecanoic acid	4.00	U	1.65	4.00	10.0
307-55-1	Perfluorododecanoic acid	4.00	U	2.45	4.00	10.0
375-85-9	Perfluoroheptanoic acid	4.00	U	1.85	4.00	10.0
355-46-4	Perfluorohexanesulfonic acid	4.00	U	1.64	4.00	10.0
307-24-4	Perfluorohexanoic acid	4.00	U	1.94	4.00	10.0
375-95-1	Perfluorononanoic acid	4.00	U	1.68	4.00	10.0
1763-23-1	Perfluorooctanesulfonic acid	4.00	U	1.70	4.00	10.0
335-67-1	Perfluorooctanoic acid	4.00	U	1.80	4.00	10.0
72629-94-8	Perfluorotridecanoic acid	4.00	U	2.56	4.00	10.0
2058-94-8	Perfluoroundecanoic acid	4.00	U	1.86	4.00	10.0

3C WATER SEMIVOLATILE LCS/LCSD RECOVERY

Report No:	220012412		
Prep Method:	EPA 537 Rev. 1.1 Prep	Prep Batch:	676188
Analytical Method:	EPA 537 Rev. 1.1	Analytical Batch:	676395

GCAL QC ID: 2005452 ANALYTE	UNITS	SPIKE ADDED	SAMPLE RESULT	LCS RESULT	LCS % REC #	QC LIMITS
Perfluorobutanesulfonic acid	ng/L	70.8	0	61	86	70 - 130
Perfluorodecanoic acid	ng/L	80	0	61.4	77	70 - 130
Perfluorododecanoic acid	ng/L	80	0	61.9	77	70 - 130
Perfluoroheptanoic acid	ng/L	80	0	66.1	83	70 - 130
Perfluorohexanesulfonic acid	ng/L	73	0	60.3	83	70 - 130
Perfluorohexanoic acid	ng/L	80	0	64.1	80	70 - 130
Perfluorononanoic acid	ng/L	80	0	80.6	101	70 - 130
Perfluorooctanesulfonic acid	ng/L	74	0	65.5	88	70 - 130
Perfluorooctanoic acid	ng/L	80	0	65.3	82	70 - 130
Perfluorotridecanoic acid	ng/L	80	0	61.1	76	70 - 130
Perfluoroundecanoic acid	ng/L	80	0	60.3	75	70 - 130

GCAL QC ID: 2005453		SPIKE	LCSD	LCSD	/	%	/		QC L	.IMIT	S	
ANALYTE	UNITS	ADDED	RESULT	% REC	/ #	RPD /	#	RE	C	- 1	RPI	כ
Perfluorobutanesulfonic acid	ng/L	70.8	55.3	78		10		70 -	130	0	-	30
Perfluorodecanoic acid	ng/L	80	58.5	73		5		70 -	130	0	-	30
Perfluorododecanoic acid	ng/L	80	63.2	79		2		70 -	130	0	-	30
Perfluoroheptanoic acid	ng/L	80	66.8	84		1		70 -	130	0	-	30
Perfluorohexanesulfonic acid	ng/L	73	56.9	78		6		70 -	130	0	-	30
Perfluorohexanoic acid	ng/L	80	60.2	75	\neg	6		70 -	130	0	-	30
Perfluorononanoic acid	ng/L	80	112	(140)	*	(33)	*	70 -	130	0	-	30
Perfluorooctanesulfonic acid	ng/L	74	77.2	104	\Box	16		70 -	130	0	-	30
Perfluorooctanoic acid	ng/L	80	63.5	79	一	3		70 -	130	0	-	30
Perfluorotridecanoic acid	ng/L	80	61.7	77	\neg	.9		70 -	130	0	-	30
Perfluoroundecanoic acid	ng/L	80	62.1	78		3		70 -	130	0	-	30

RPD : 1 out of 11 outside limits	# Column to be used to flag recovery and RPD values with an asterisk
Spike Recovery: 1 out of 22 outside limits	* Values outside of QC limits

FORM III SV-1

3C WATER SEMIVOLATILE MS/MSD RECOVERY

Report No:	220012412	Parent Sample ID:	Potable-05
Prep Method:	EPA 537 Rev. 1.1 Prep	Prep Batch:	676188
Analytical Method:	EPA 537 Rev. 1.1	Analytical Batch:	676395

GCAL QC ID: 22001241207 ANALYTE	UNITS	SPIKE ADDED	SAMPLE RESULT	MS RESULT	MS % REC #	QC LIMITS
Perfluorobutanesulfonic acid	ng/L	70.8	1.09	58.4	81	70 - 130
Perfluorodecanoic acid	ng/L	80	.89	57.6	71	70 - 130
Perfluorododecanoic acid	ng/L	80	.00939	58	72	70 - 130
Perfluoroheptanoic acid	ng/L	80	.52	64.6	80	70 - 130
Perfluorohexanesulfonic acid	ng/L	73	.956	58.6	79	70 - 130
Perfluorohexanoic acid	ng/L	80	1.79	68.7	84	70 - 130
Perfluorononanoic acid	ng/L	80	-172	80.6	101	70 - 130
Perfluorooctanesulfonic acid	ng/L	74	.553	63.3	85	70 - 130
Perfluorooctanoic acid	ng/L	80	138	63.3	79	70 - 130
Perfluorotridecanoic acid	ng/L	80	.026	50.1	(63) *	70 - 130
Perfluoroundecanoic acid	ng/L	80	.391	57.9	72	70 - 130

GCAL QC ID: 22001241208		SPIKE	MSD	MSD %	% /		QC	LIMITS
ANALYTE	UNITS	ADDED	RESULT		# RPD/	#	REC	RPD
Perfluorobutanesulfonic acid	ng/L	70.8	60.5	84	3	\Box	70 - 130	0 - 30
Perfluorodecanoic acid	ng/L	80	56.6	70	2	\Box	70 - 130	0 - 30
Perfluorododecanoic acid	ng/L	80	61	76	5	\neg	70 - 130	0 - 30
Perfluoroheptanoic acid	ng/L	80	66.1	82	2	\neg	70 - 130	0 - 30
Perfluorohexanesulfonic acid	ng/L	73	61	82	4	\neg	70 - 130	0 - 30
Perfluorohexanoic acid	ng/L	80	66.2	81	4	丁	70 - 130	0 - 30
Perfluorononanoic acid	ng/L	80	78	97	3		70 - 130	0 - 30
Perfluorooctanesulfonic acid	ng/L	74	66.8	90	5	ヿ	70 - 130	0 - 30
Perfluorooctanoic acid	ng/L	80	63.8	80	.8	一	70 - 130	0 - 30
Perfluorotridecanoic acid	ng/L	80	59	74	16		70 - 130	0 - 30
Perfluoroundecanoic acid	ng/L	80	60.3	75	4	ヿ	70 - 130	0 - 30

RPD :	0	out of	_	11	out	side lim	its	# Column to be used to flag recovery and RPD values with an asterisk
Spike Re	ecove	ry:	1	out	of	22	outside limits	* Values outside of QC limits

FORM III SV-1

4B SEMIVOLATILE METHOD BLANK SUMMARY

Report No:	220012412	Method Blank ID:	2006526					
Matrix:	Water		Instrument ID:	QQQ1				
Sample Amt:	125 mL		Lab File ID:	2200130A_31.d				
Injection Vol.:	1.0	μL)	GC Column:	ACC-C18-30M IE	2.1	(mm)		
Prep Final Vol.:	1000 ()	μL)	Dilution Factor:	1 Analyst	вмн			
Prep Date:	01/30/20		Analysis Date:	01/30/20 Time	1522			
Prep Batch:	676405		Analytical Batch:	676542				
Prep Method:	EPA 537 Rev. 1.1		Analytical Method:	EPA 537 Rev. 1.1				

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD

		GCAL	LAB	DATE	TIME
	CLIENT SAMPLE ID	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
1.	LCS2006527	2006527	2200130A_32.d	01/30/20	1533
2.	LCSD2006528	2006528	2200130A_33.d	01/30/20	1545
3.	FRB-012220RE	22001241215RE	2200205B_22.d	02/05/20	1750
4.	Potable-01RE	22001241201RE	2200205B_23.d	02/05/20	1802
5.	Potable-02RE	22001241202RE	2200205B_24.d	02/05/20	1813
6.	Potable-03RE	22001241203RE	2200205B_25.d	02/05/20	1824
7.	Potable-04RE	22001241204RE	2200205B_26.d	02/05/20	1836
8.	Potable-04-FDRE	22001241205RE	2200205B_27.d	02/05/20	1847
9.	Potable-05RE	22001241206RE	2200205B_28.d	02/05/20	1858
10.	Potable-05MSRE	22001241207RE	2200205B_29.d	02/05/20	1910
11.	Potable-05MSDRE	22001241208RE	2200205B_30.d	02/05/20	1921
12.	Potable-06RE	22001241209RE	2200205B_31.d	02/05/20	1932
13.	Potable-07RE	22001241210RE	2200205B_33.d	02/05/20	1955
14.	Potable-08RE	22001241211RE	2200205B_34.d	02/05/20	2006
15.	Potable-09RE	22001241212RE	2200205B_35.d	02/05/20	2018
16.	Potable-10RE	22001241213RE	2200205B_36.d	02/05/20	2029
17.	Potable-11RE	22001241214RE	2200205B_37.d	02/05/20	2040

Report No:	220012412		Client Sample ID:	MB2006526				
Collect Date:	NA Time: NA		GCAL Sample ID:	2006526				
Matrix:	Water % Moisture: NA		Instrument ID:	QQQ1				
Sample Amt:	125 mL		Lab File ID:	2200130A_31.d				
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M ID 2.1 (mm)				
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1 Analyst: BMH				
Prep Date:	01/30/20		Analysis Date:	01/30/20 Time: 1522				
Prep Batch:	676405		Analytical Batch:	676542				
Prep Method:	EPA 537 Rev. 1.1		Analytical Method:	EPA 537 Rev. 1.1				

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
2991-50-6	NEtFOSAA	8.00	U	5.38	8.00	10.0
2355-31-9	NMeFOSAA	8.00	U	4.60	8.00	10.0
376-06-7	Perfluorotetradecanoic acid	4.00	U	2.76	4.00	10.0

3C WATER SEMIVOLATILE LCS/LCSD RECOVERY

Report No:	220012412										
Prep Method:	EPA 537 Rev. 1.1 Pre	р		Prep Ba	atch:	676405					
Analytical Method:	EPA 537 Rev. 1.1			Analytical Batch;		676542					
GCAL QC ID:	2006527	UNITS	SPIKE ADDED	SAMPLE RESULT	LCS RESULT	LCS %	#	QC	LIM	ITS	
NEtFOSAA		ng/L	80	0	68.8	86		70	*	130	
NMeFOSAA		ng/L	80	0	67,4	84		70	-	130	
Perfluorotetradeca	ng/L	80	0	70.2	88		70	-	130		

GCAL QC ID: 2006528		SPIKE	LCSD	LCSD		%	/	QC LIMITS				
ANALYTE	UNITS	ADDED	RESULT	% REC	#	RPD	/#	R	EC		RPI)
NEtFOSAA	ng/L	80	71.5	89		4		70	- 130	0	-	30
NMeFOSAA	ng/L	80	68	85		.9		70	- 130	0	-	30
Perfluorotetradecanoic acid	ng/L	80	63.5	79		10		70	- 130	0	-	30

RPD:	0	out of	3	outs	side lim	nits	# Column to be used to flag recovery and RPD values with an asterisk
Spike F	Recover	rv:	0	out of	6	outside limits	* Values outside of QC limits

FORM III SV-1

3C WATER SEMIVOLATILE MS/MSD RECOVERY

Report No:	220012412			Parent	Sample ID:	Potable-05RE						
Prep Method:	EPA 537 Rev. 1.1 P	гер		Prep Ba	atch:	676405						
Analytical Method:	EPA 537 Rev. 1.1			Analytic	cal Batch:	676962						
GCAL QC ID: 2	22001241207	UNITS	SPIKE ADDED	SAMPLE RESULT	MS RESULT	MS %	#	QC	LIMITS			
NEtFOSAA		ng/L	400	.235	50	12	1 * 1	70	- 130			
NMeFOSAA		ng/L	400	.155	58.3	/ 15	*	70	- 130			
Perfluorotetradeca	Perfluorotetradecanoic acid			.503	26.9	7 /	*	70	- 130			

GCAL QC ID: 22001241208		SPIKE		MSD %	6	%		QC LIMITS			
ANALYTE	UNITS	ADDED	RESULT	REC	#	RPD	#	REC		RPD	
NEtFOSAA	ng/L	400	56.5	/ 14	*	12	T	70 -	130	0 - 30	
NMeFOSAA	ng/L	400	61.7	15	*	6		70 -	130	0 - 30	
Perfluorotetradecanoic acid	ng/L	400	11.9	3	*	(77)	*	70 -	130	0 - 30	
					W.						

RPD:	1	out of	3	0	utside	limit	s	# Column to be used to flag recovery and RPD values with an as	terisk
Spike R	ecove	ry:	6	out of	f 6	6	outside limits	* Values outside of QC limits	

FORM III SV-1

Sample Summary

LAB ID	Client ID	Matrix	Collect Date/Time	Receive Date/Time	
22001241201	Potable-01	Water	01/22/2020 08:35	01/24/2020 10:00	
22001241202	Potable-02	Water	01/22/2020 09:20	01/24/2020 10:00	
22001241203	Potable-03	Water	01/22/2020 09:55	01/24/2020 10:00	
22001241204	Potable-04	Water	01/22/2020 10:20	01/24/2020 10:00	
22001241205	Potable-04-FD	Water	01/22/2020 10:20	01/24/2020 10:00	
22001241206	Potable-05	Water	01/22/2020 10:45	01/24/2020 10:00	
22001241207	Potable-05MS	Water	01/22/2020 10:45	01/24/2020 10:00	
22001241208	Potable-05MSD	Water	01/22/2020 10:45	01/24/2020 10:00	
22001241209	Potable-06	Water	01/22/2020 11:40	01/24/2020 10:00	
22001241210	Potable-07	Water	01/22/2020 13:10	01/24/2020 10:00	
22001241211	Potable-08	Water	01/22/2020 13:40	01/24/2020 10:00	
22001241212	Potable-09	Water	01/22/2020 14:00	01/24/2020 10:00	
22001241213	Potable-10	Water	01/23/2020 08:45	01/24/2020 10:00	
22001241214	Potable-11	Water	01/23/2020 09:20	01/24/2020 10:00	
22001241215	FRB-012220	Water	01/22/2020 15:00	01/24/2020 10:00	

Case Narrative

Client: AECOM-East Report: 220012412

Pace Analytical Gulf Coast received and analyzed the sample(s) listed on the Report Sample Summary page of this report. Receipt of the sample(s) is documented by the attached chain of custody. This applies only to the sample(s) listed in this report. No sample integrity or quality control exceptions were identified unless noted below.

This report was completed in accordance with DOD QSM 5.1.1 as specified in the contract.

SEMI-VOLATILES MASS SPECTROMETRY

In the EPA 537 Revision 1.1 analysis, the recovery for the surrogate, d5-NEtFOSAA is outside control limits for several samples and the recovery for the surrogate, M6PFDA is outside control limits and all samples were prepped twice. All samples were extracted twice and the recoveries for these surrogates are reported for both extracts. No additional sample volume was available to extract a third time.

In the EPA 537 Revision 1.1 analysis of prep batch 676188, the MS and/or MSD exhibited recovery failures. The LCSD recovery is above the upper control limit for Perfluorononanoic acid. The LCS/LCSD RPD is above the upper control limit for this analyte. The associated samples were re-extracted but the LCS/LCSD recoveries were low for this analyte in the second batch.

In the EPA 537 Revision 1.1 analysis for prep batch 676405, the MS/MSD exhibited recovery and RPD failures. All LCS/LCSD recoveries and RPDs are acceptable.

In the EPA 537 Revision 1.1 analysis of analytical batch 676395 (1/28/2020), the recovery for Perfluorononanoic acid (PFNA)CV is above the upper control limit in the ICV. This analyte was not detected in the associated samples.

In the EPA 537 Revision 1.1 analysis for analytical batch 676962, the area for the injected internal standard, M4PFOS is outside the acceptance range for sample 22001241208 (Potable-05MSD). No target analytes reported in this batch are associated with this internal standard.

Q Flag Summary

Client Sample ID: Potable-01 Lab Samp

Lab Sample ID: 22001241201

Method	: EPA 53	7 Revisio	on 1.1	Analy	sis Date:	1/28/202	20 11:4	7:00 PN	1
Analyte	CAS	CCV OUL	LCS/LCSD	OUL	SURROG	ATE OUL	IS OUL	CLCCV	OUL
PFNA	375-95-1		Х						

Client Sample ID: Potable-02

Lab Sample ID: 22001241202

Method	Method: EPA 537 Revision 1.1 Analysis Date: 1/28/2020 11:59:00 PM										
Analyte	CAS	CCV OUL	LCS/LCSD	OUL	SURRO	GATE OL	IL IS OU	CLCCV	OUL		
PFNA	375-95-1		Х						20.50		

Client Sample ID: Potable-03

Lab Sample ID: 22001241203

Method	: EPA 53	7 Revisio	on 1.1	Analysis Date: 1/29/2020 12:10:00 AM					
Analyte	CAS	CCV OUL	LCS/LCSD	OUL	SURROG	ATE OUL	IS OUL	CLCCV O	UL
PFNA	375-95-1		Х						-

Client Sample ID: Potable-04

Lab Sample ID: 22001241204

Method	: EPA 53	7 Revisio	on 1.1	Analy	sis Date:	1/29/202	0 12:2:	2:00 AN	1
Analyte	CAS	CCV OUL	LCS/LCS	OUL	SURROG	ATE OUL	IS OUL	CLCCV	OUL
PFNA	375-95-1		Х					e per conse	

Client Sample ID: Potable-04-FD

Lab Sample ID: 22001241205

Method	: EPA 53	7 Revisio	on 1.1 An	nalysis Date:	1/29/202	0 12:33	3:00 AM
Analyte	CAS	CCV OUL	LCS/LCSD O	ULSURROG	ATE OUL	S OUL	CLCCV OUL
PFNA	375-95-1		Х				

Client Sample ID: Potable-05

Lab Sample ID: 22001241206

Method	: EPA 53	7 Revisio	on 1.1	Analy	sis Date:	1/29/202	0 12:4	4:00 AM	
Analyte	CAS	CCV OUL	LCS/LCSD	OUL	SURROG	ATE OUL	IS OUL	CLCCV O	UL
PFNA	375-95-1		Х						

Client Sample ID: Potable-06

Lab Sample ID: 22001241209

Method: EPA 537 Revision 1.1 Analysis Date: 1/29/2020 1:18:00 AM Analyte CAS CCV OUL LCS/LCSD OUL SURROGATE OUL IS OUL CLCCV OU									
Analyte	CAS	CCV OUL	LCS/LCSI	OUL	SURROG	ATE OUL	IS OUL	CLCCV C	UL
PFNA	375-95-1		Х						

Client Sample ID: Potable-07

Lab Sample ID: 22001241210

Method	: EPA 53	7 Revisio	on 1.1	Analy	sis Date	1/29/	2020 1	1:29:	00 AM	
Analyte	CAS	CCV OUL	LCS/LCSD	OUL	SURROG	ATE C	ULIS	OUL	CLCCV C	JUL
PFNA	375-95-1		X							

Client Sample ID: Potable-08 Lab Sample ID: 22001241211

Method	: EPA 53	7 Revisio	on 1.1	Analy	sis Date:	1/29/20	20 1:41:	MA 00:
Analyte	CAS	CCV OUL	LCS/LCSE	OUL	SURROG	ATE OUL	IS OUL	CLCCV OUL
PFNA	375-95-1		Х					

Client Sample ID: Potable-09 Lab Sample ID: 22001241212

Method	: EPA 53	7 Revisio	on 1.1	A	naly	sis D	ate: 1	/29/2	020	2:04	:00	AM	
Analyte	CAS	CCV OUL	LCS/L	CSD	OUL	SURF	ROGA	TE O	ULIS	OUL	CLC	ccv ou	正
PFNA	375-95-1			Х									

Client Sample ID: Potable-10 Lab Sample ID: 22001241213

Method	: EPA 53	7 Revisio	on 1.1	Analy	sis Date	: 1/29/2	020 2	2:15:	MA 00:	
Analyte	CAS	CCV OUL	LCS/LCSE	OUL	SURRO	GATE OL	JL IS (OUL	CLCCV O	UL
PFNA	375-95-1		Х							

Client Sample ID: Potable-11 Lab Sample ID: 22001241214

Method	: EPA 53	7 Revisio	on 1.1	Analy	sis Date	e: 1/29	/202	0 2:27	00 AM	
Analyte	CAS	CCV OUL	LCS/LCSD	OUL	SURRO	GATE	OUL	IS OUL	CLCCV	OUL
PFNA	375-95-1		Х							

Client Sample ID: FRB-012220 Lab Sample ID: 22001241215

Method	: EPA 53	7 Revisio	on 1.1	Analy	sis Date:	1/29/202	0 2:38	MA 00:	
Analyte	CAS	CCV OUL	LCS/LCSI	OUL	SURROG	ATE OUL	IS OUL	CLCCV	OUL
PFNA	375-95-1		Х						

CCV OUL=CCV out of limits LCS/LCSD OUL=LCS/LCSD out of limits SURROGATE OUL=Surrogate out of limits IS OUL=Internal Standard out of limits CLCCV OUL=Closing CCV out of limits

SAMPLE RECEIVING CHECKLIST

	#
	N
2 1/2 2/0	
	4
	O.
	-
	-
	0
	N
PERSONAL PROPERTY.	
	N
-	117
	4

SAMPLE DELIVE	SAMPLE DELIVERY GROUP 220012412	412	CHECKIST		VEC X	2
			CHECKES		3	3
Client PM AEC 4859 - AECOM-East	E Transport Method	Method	Samples received with proper thermal preservation?		>	
	-		Radioactivity is <1600 cpm? If no, record cpm value in notes section.	notes section.	>	
Profile Number	Received By	A /u	COC relinquished and complete (including sampleIDs, collect times, and sampler)?	collect times, and sampler)?	>	
	58	· · ·	All containers received in good condition and within hold time?	d time?	>	
Line Item(s)	Receive Date(s)	e(s)	All sample labels and containers received match the chain of custody?	ain of custody?	>	
3-DW	01/24/20		Preservative added to any containers?			>
			If received, was headspace for VOC water containers < 6mm?	6mm?	>	
			Samples collected in containers provided by Pace Gulf Coast?	Coast?	>	
COOLERS			DISCREPANCIES	LAB PRESERVATIONS		
Airbill Th	Thermometer ID: E34		None	o o		
7786-4405-1450		3.1				
NOTES						
Revision 1.6						Page 1 of 1

Pace Gulf Coast Report#: 220012412

CHAIN OF CUSTODY RECOF SDG: 220012412

-
S
CO
Щ
4
2
0
75
2
щ
<
t
0
160
~
#
4
=
#
01
.=
0
-

AFIC	
- 101	
	1
	ľ

		Rei	Report To:	Į.		Bill To:		An	alytica	1 Regu	Analytical Requests & Method	pot			-
	Client:		4	AECOM		Client: SAME	1	-	L	L		Г	Custody Seal:		
	Address:		Mile	stone	enter Dr.	Address: SAME				- 1/2			Yes		
		Gern	nant	own,	Germantown, MD 20876					0.00			Intact: 🗗 Yes 🗆 No		
	Contact:	ž	aour	n Ta	Naoum Tavantzis	Contact: SAME		23			_				
	Phone:		919.	919-461-1178	1178	Phone: SAME	-	ро			_		Temperature: 3,1 E34	ļ	
	Email:	naoum.	tava.	ntzis (Email: naoum.tavantzis@aecom.com	Email: SAME		eţp				_	37cpM		
								M		_				_	
P.O. Number 104397	mber 97			Project 60	Project Name/Number 60552172 - ARNG PFA	FAS - Grand Ledge Residential DW		EPA					☐ Dissolved Analysis Requested	_	
							T	_	_			_			
Sampled By:	i by:	Scott Kalemba	Kale	smbe									☐ Lab Filtered		
Matrix	Date	Time (2400)	Сомр	Grab	Samp	ole Description	No. of Containers	smziาT					← Preservative / Notes ↓	GCAL	۲ A -
×	01/22/20	835		×	Potable-01		2	×							
M	01/22/20	920		×	Potable-02		2	×						CR	
M	01/22/20	955		×	Potable-03		2	×						3	
*	01/22/20	1020		×	Potable-04		2	×						7	
8	01/22/20 1020	1020		×	Potable-04-FD		2	×						S	
≩	01/22/20	1045		×	Potable-05		2	×						2	
≩	01/22/20 1045	1045		×	Potable-05MS		2	×						1	
≩	01/22/20	1045		×	Potable-05MSD		2	×		-		=		20	
>	01/22/20 1140	1140		×	Potable-06		2	×						d	
≥	01/22/20 1310	1310		×	Potable-07		2	×						01	
≩	01/22/20 1340	1340		×	Potable-08		2	×						<u></u>	
>	01/22/20 1400	1400		×	X Potable-09		2	×						7,1	
Airbill N	Airbill Number:	178	-0	干	77610-4405-1450										
Turn An	Turn Around Time(Business Days):	usiness L	Jays):			4* Days Standard (per contract/quote)	ote)								
Relinguish	Relinguished by: (Signature)		1 0		Date/Time: Roceived by: (Signature) 01/23/2020 - 1600	FedEx	Date/Time:		Notes:						
Relinquish	Relinquished by: (Signature)	7			V24/20 Received by (St	town James	Date/Time] 000		PA	Me	thod 5;	37 f	EPA Method 537 for drinking water		
Relinquish	Relinquished by: (Signature)				Date/Time: Received by (Sign)	atura) //	Date/Time:		res	erv	Preservative = Trizma	Tri	zma		
Matrix	Matrix: W - Water S-Solid I - Linuid I-Tiesus	Cacolle		James		* Domiton print program of the showing		-							7

^{&#}x27;Matrix: W = Water, S=Solid, L=Liquid, T=Tissue.

^{*-} Requires prior approval, Rush charges may apply. We cannot accept verbal changes. Please email written changes to your GCAL Project Manager.

P.O. Number

Sampled By: 104397

Client ID: 4859 - AECOM-East

Y RECOR SDG: 220012412	PM: AEC		Analytical Requests & Method	Custody Seal:	Used: Ves No			Temperature: 3,1 E34	27C8M	Dissolved Analysis Requester		Lab Fillered	← Preservative / Notes			Unpreserved							
							59	ро	Neth	1 4			emzi1T	×	×	×	_		<u> </u>	_		H	-
ST											D		No. of Containers	8	2	8							
CHAIN OF CUSTODY RECOR			Bill To:	Client: SAME	Address: SAME		Contact: SAME	Phone: SAME	Email: SAME		ARNG PFAS - Grand Ledge Residential DW		Sample Description										
	ANALY HEAL, LABORATORES 1118 379 Innovation Park Drive Baton Rouge, LA 70820-7402	225.769.4900 www.gcal.com		N	Address: 12420 Milestone Center Dr.	Germantown, MD 20876	Naoum Tavantzis	919-461-1178	Email: naoum.tavantzis@aecom.com	Project Name/Number	60552172 - ARNG			Potable-10	Potable-11	FRB-012220							
	Baton F	WW 00	To:	AECOM	estone	town,	m Ta	-461-	antzis	Proje	99	gme	Grab	×	×	×							_
U	1 C A L Orive 1	69.490	Report To:	V	0 Mile	mant	laoni	919.	n.tava			Kal	Сощр					_					_
U	n Park	225.7	æ		1242	Gel	_		naonu			Scott Kalemba	Time (2400)	845	920	1500							
	A N 979 Innovatic			Client:	Address:	*	Contact:	Phone:	Email:)er		Jy:	Date	1/23/20	1/23/20	1/22/20							

Matrix ≥ ≥ ≥

01/23/20

01/23/20

01/22/20 1500

GCAL

2 7 3

hed by: (Signature)

Airbill Number: 77810-4405-1450

Turn Around Time(Business Days):

Days Standard (per contract/quote) □ RUSH*

Notes:

EPA Method 537 for drinking water **FedEx** Serve Serve Date/Time: 01/23/2020 - 1600 Date/Time: 01/24/20 Date/Time: 02/e/20 Date/Time: 02/e/2010 Date *- Requires prior approval, Rush charges may apply. We cannot accept verbal changes. Please email written changes to your GCAL Project Manager.

Preservative = Trizma

Matrix: W = Water, S=Solid, L=Liquid, T=Tissue.

Data Qualifying Codes

Two types of data qualifying codes or flags are applied in the course of the data review. The data validation flags indicate data that are not usable for decision-making, more than normally biased and/or variable, or not representative of field conditions. These codes and their definitions are presented below in the hierarchy stipulated in the USEPA Contract Laboratory Program National Functional Guidelines for Organic (January 2017) Data Review.

Data Validation Flags

Flag	Interpretation
R	The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
U	The analyte was analyzed for, but not detected at a level greater than or equal to the level of the adjusted Detection Limit (DL) for sample and method.
J+	Reported value may not be accurate or precise, but the result may be biased high.
J-	Reported value may not be accurate or precise, but the result may be biased low.
J	The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample (due either to the quality of the data generated because certain quality control criteria were not met, or the concentration of the analyte was below the Limit of Detection (LOD).
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
UJ	The analyte was not detected at a level greater than or equal to the adjusted DL. However, the reported adjusted DL is approximate and may be inaccurate or imprecise.
С	This qualifier applies to pesticide and Aroclor results when the identification has been confirmed by gas Chromatograph/Mass Spectrometer (GC/MS)
X	This qualifier applies to pesticide and Aroclor results when GC/MS analysis was attempted but was unsuccessful.

The other type of code used by AECOM is a "Reason Code". The reason code indicates the type of quality control failure that led to the application of the data validation flag.

Reason Codes

Code	Description
a	Tracer recovery (radiochemical data only)
be	Equipment blank contamination
bf	Field blank contamination
bl	Laboratory blank contamination
bm	Missing Blank Information
с	Calibration issue
cl	Clean-up standard recovery
ср	Insufficient in growth (radiochemical data only)
cr	Chromatographic resolution
d	Reporting limit raised due to chromatographic interference
e	Ether interference
fd	Field duplicate RPDs
g	Chromatographic pattern match issue
h	Holding times
i	Internal standard areas
ii	Injection internal standard area or retention time exceedance
k	Estimated Maximum Possible Concentrations
1	LCS recoveries
lc	Labeled compound recovery
ld	Laboratory duplicate RPDs (matrix duplicate, MSD, LCSD)
m	Matrix spike recovery
nb	Negative laboratory blank contamination
p	Chemical preservation issue
pe	Post Extraction Spike
q	Quantitation issue
r	Dual column RPD
rp	Re-extraction precision issue [PAHs only]

DATA VALIDATION REPORT – Stage 2b Review

SDG No.:	220073108	Analysis:	Per- and Polyfluorinated Alkyl Substances
Laboratory:	GCAL	Project:	Grand Ledge
Reviewer:	Naoum Tavantzis	Date:	August 21st, 2020

This report presents the findings of a review of the referenced data. The report consists of this summary, a listing of the samples included in the review, copies of data reports with data qualifying flags applied, data review worksheets, supporting documentation, and an explanation of the data qualifying flags employed. The review performed is based on the specifics of the analytical method referenced and provisions of the approved project-specific work plan; and, qualified according to the *Contract Laboratory Program National Functional Guidelines* (NFG) *for Superfund Organic Methods Data Review*, EPA-540-R-2017-002, January 2017, Modifications reflect the level of review requested, the specifications of the project-specific QAPP, and the specifics of the analytical methods employed.

Major

Anomalies: None.

Minor

Anomalies: The matrix spike pair (MS/MSD) performed on field sample GL-POTABLE-12

displayed percent recoveries less than the lower quality control limit of 70%:

Analyte	MS	MSD
Analyte	Recovery (%)	Recovery (%)
NEtFOSAA	70	66
PFDoA	69	72
PFTeDA	20	27
PFTrDA	46	60
PFUnDA	70	64

The associated parent sample and field duplicate results were non-detect and were qualified UJ,m.

Correctable

Anomalies: None.

Comments: On the basis of this evaluation, the laboratory appears to have followed the specified

method, with the exception of anomalies discussed previously. If a given fraction was not discussed, all quality control criteria reviewed were within acceptable limits. All data are

usable, as qualified, for their intended purpose based on the data reviewed.

Signed:

Naoum Tavantzis

Summary of Qualified Results

Field Sample	Analyte	Result Value	Lab Qualifier	Final DV Flag	Reason Code
	PFUnDA	5.00	UJ	UJ	m
	NEtFOSAA	6.00	UJ	UJ	m
GL-POTABLE-12	PFDoA	5.00	UJ	UJ	m
	PFTeDA	5.00	UJ	UJ	m
	PFTrDA	5.00	UJ	UJ	m
	PFUnDA	5.00	U	UJ	m
	NEtFOSAA	6.00	U	UJ	m
GL-POTABLE-12-DUP	PFDoA	5.00	U	UJ	m
	PFTeDA	5.00	U	UJ	m
	PFTrDA	5.00	U	UJ	m

Grand Ledge

Laboratory:
SDG#: Pace Gulf Coast 220073108

		,			
Job:	60552172	SDG#:	2	20073108	
Sample ID	Client ID	Sample Type	Sample Date	Matrix	PFAS - Method 537M
22007310801	GL-POTABLE-12	Field Sample	7/28/2020	Aqueous	Χ
22007310802	GL-POTABLE-12-DUP	Field Duplicate	7/28/2020	Aqueous	Χ
22007310805	GL-POTABLE-20	Field Sample	7/28/2020	Aqueous	Χ

Report No:	220073108		Client Sample ID:	GL-POTABLE-12
Collect Date:	07/28/20 Time: 0920		GCAL Sample ID:	22007310801
Matrix:	Water % Moisture: NA		Instrument ID:	QQQ2
Sample Amt:	125 mL		Lab File ID:	2200804A_44.d
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1 Analyst: BMH
Prep Date:	08/03/20		Analysis Date:	08/05/20 Time: 0318
Prep Batch:	689113		Analytical Batch:	689424
Prep Method:	EPA 537 Rev. 1.1		Analytical Method:	EPA 537 Rev. 1.1

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
2991-50-6	NEtFOSAA	6.00	UJ	2.09	6.00	10.0
2355-31-9	NMeFOSAA	5.00	U	2.63	5.00	10.0
375-73-5	Perfluorobutanesulfonic acid	5.00	U	2.45	5.00	10.0
335-76-2	Perfluorodecanoic acid	5.00	U	2.21	5.00	10.0
307-55-1	Perfluorododecanoic acid	5.00	UJ	2.17	5.00	10.0
375-85-9	Perfluoroheptanoic acid	5.00	U	2.46	5.00	10.0
355-46-4	Perfluorohexanesulfonic acid	5.00	U	2.89	5.00	10.0
307-24-4	Perfluorohexanoic acid	5.00	U	2.27	5.00	10.0
375-95-1	Perfluorononanoic acid	5.00	U	3.14	5.00	10.0
1763-23-1	Perfluorooctanesulfonic acid	5.00	U	3.85	5.00	10.0
335-67-1	Perfluorooctanoic acid	5.00	U	2.28	5.00	10.0
376-06-7	Perfluorotetradecanoic acid	5.00	UJ	3.16	5.00	10.0
72629-94-8	Perfluorotridecanoic acid	5.00	ÚĴ	2.56	5.00	10.0
2058-94-8	Perfluoroundecanoic acid	5.00	UJ	2.52	5.00	10.0

Report No:	220073108	Client Sample ID: GL-POTABLE-12-DUP	
Collect Date:	07/28/20 Time: 0920	GCAL Sample ID: 22007310802	
Matrix:	Water % Moisture: NA	Instrument ID: QQQ2	
Sample Amt:	125 mL	Lab File ID: 2200804A_45.d	
Injection Vol.:	1.0 (µL)	GC Column: ACC-C18-30M ID	2.1 (mm)
Prep Final Vol.:	1000 (µL)	Dilution Factor: 1 Analyst:	ВМН
Prep Date:	08/03/20	Analysis Date: 08/05/20 Time:	0332
Prep Batch:	689113	Analytical Batch: 689424	
Prep Method:	EPA 537 Rev. 1.1	Analytical Method: EPA 537 Rev. 1.1	

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
2991-50-6	NEtFOSAA	6.00	U	2.09	6.00	10.0
2355-31-9	NMeFOSAA	5.00	U	2.63	5.00	10.0
375-73-5	Perfluorobutanesulfonic acid	5.00	U	2.45	5.00	10.0
335-76-2	Perfluorodecanoic acid	5.00	U	2.21	5.00	10.0
307-55-1	Perfluorododecanoic acid	5.00	U	2.17	5.00	10.0
375-85-9	Perfluoroheptanoic acid	5.00	U	2.46	5.00	10.0
355-46-4	Perfluorohexanesulfonic acid	5.00	U	2.89	5.00	10.0
307-24-4	Perfluorohexanoic acid	5.00	U	2.27	5.00	10.0
375-95-1	Perfluorononanoic acid	5.00	U	3.14	5.00	10.0
1763-23-1	Perfluorooctanesulfonic acid	5.00	U	3.85	5.00	10.0
335-67-1	Perfluorooctanoic acid	5.00	U	2.28	5.00	10.0
376-06-7	Perfluorotetradecanoic acid	5.00	U	3.16	5.00	10.0
72629-94-8	Perfluorotridecanoic acid	5.00	U	2.56	5.00	10.0
2058-94-8	Perfluoroundecanoic acid	5.00	U	2.52	5.00	10.0

Report No:	220073108		Client Sample ID:	GL-POTABLE-20	
Collect Date:	07/28/20 Time: 1015		GCAL Sample ID:	22007310805	
Matrix:	Water % Moisture: NA		Instrument ID:	QQQ2	
Sample Amt:	125 mL		Lab File ID:	2200804A_49.d	_
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M ID 2.1 (mn	_ n)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1 Analyst: BMH	
Prep Date:	08/03/20		Analysis Date:	08/05/20 Time: 0424	
Prep Batch:	689113		Analytical Batch:	689424	_
Prep Method:	EPA 537 Rev. 1.1		Analytical Method:	EPA 537 Rev. 1.1	_

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
2991-50-6	NEIFOSAA	6.00	U	2.09	6.00	10.0
2355-31-9	NMeFOSAA	5.00	U	2.63	5.00	10.0
375-73-5	Perfluorobutanesulfonic acid	5.00	U	2.45	5.00	10.0
335-76-2	Perfluorodecanoic acid	5.00	U	2.21	5.00	10.0
307-55-1	Perfluorododecanoic acid	5.00	U	2.17	5.00	10.0
375-85-9	Perfluoroheptanoic acid	5.00	U	2.46	5.00	10.0
355-46-4	Perfluorohexanesulfonic acid	5.00	U	2.89	5.00	10.0
307-24-4	Perfluorohexanoic acid	5.00	U	2.27	5.00	10.0
375-95-1	Perfluorononanoic acid	5.00	U	3.14	5.00	10.0
1763-23-1	Perfluorooctanesulfonic acid	5.00	U	3.85	5.00	10.0
335-67-1	Perfluorooctanoic acid	5.00	U	2.28	5.00	10.0
376-06-7	Perfluorotetradecanoic acid	5.00	U	3.16	5.00	10.0
72629-94-8	Perfluorotridecanoic acid	5.00	U	2.56	5.00	10.0
2058-94-8	Perfluoroundecanoic acid	5.00	U	2.52	5.00	10.0

Report No:	220073108		Client Sample ID:	GL-POTABLE-24
Collect Date:	07/28/20 Time: 1110		GCAL Sample ID:	22007310806
Matrix:	Water % Moisture: NA		Instrument ID:	QQQ2
Sample Amt:	125 mL		Lab File ID:	2200804A_50.d
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1 Analyst: BMH
Prep Date:	08/03/20		Analysis Date:	08/05/20 Time: 0437
Prep Batch:	689113		Analytical Batch:	689424
Prep Method:	EPA 537 Rev. 1.1		Analytical Method:	EPA 537 Rev. 1.1

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
2991-50-6	NEtFOSAA	6.00	U	2.09	6.00	10.0
2355-31-9	NMeFOSAA	5.00	U	2.63	5.00	10.0
375-73-5	Perfluorobutanesulfonic acid	5.00	U	2.45	5.00	10.0
335-76-2	Perfluorodecanoic acid	5.00	U	2.21	5.00	10.0
307-55-1	Perfluorododecanoic acid	5.00	U	2.17	5.00	10.0
375-85-9	Perfluoroheptanoic acid	5.00	U	2.46	5.00	10.0
355-46-4	Perfluorohexanesulfonic acid	5.00	U	2.89	5.00	10.0
307-24-4	Perfluorohexanoic acid	5.00	U	2.27	5.00	10.0
375-95-1	Perfluorononanoic acid	5.00	Ú	3.14	5.00	10.0
1763-23-1	Perfluorooctanesulfonic acid	5.00	U	3.85	5.00	10.0
335-67-1	Perfluorooctanoic acid	5.00	U	2.28	5.00	10.0
376-06-7	Perfluorotetradecanoic acid	5.00	U	3.16	5.00	10.0
72629-94-8	Perfluorotridecanoic acid	5.00	U	2.56	5.00	10.0
2058-94-8	Perfluoroundecanoic acid	5.00	U	2.52	5.00	10.0

Report No:	220073108		Client Sample ID:	GL-POTABLE-23
Collect Date:	07/28/20 Time: 1320		GCAL Sample ID:	22007310807
Matrix:	Water % Moisture: NA		Instrument ID:	QQQ2
Sample Amt:	125 mL		Lab File ID:	2200804A_51.d
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1 Analyst: BMH
Prep Date:	08/03/20		Analysis Date:	08/05/20 Time: 0451
Prep Batch:	689113		Analytical Batch:	689424
Prep Method:	EPA 537 Rev. 1.1		Analytical Method:	EPA 537 Rev. 1.1

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
2991-50-6	NEtFOSAA	6.00	U	2.09	6.00	10.0
2355-31-9	NMeFOSAA	5.00	U	2.63	5.00	10.0
375-73-5	Perfluorobutanesulfonic acid	5.00	U	2.45	5.00	-10.0
335-76-2	Perfluorodecanoic acid	5.00	U	2.21	5.00	10.0
307-55-1	Perfluorododecanoic acid	5.00	U	2.17	5.00	10.0
375-85-9	Perfluoroheptanoic acid	5.00	U	2.46	5.00	10.0
355-46-4	Perfluorohexanesulfonic acid	5.00	U	2.89	5.00	10.0
307-24-4	Perfluorohexanoic acid	5.00	U	2.27	5.00	10.0
375-95-1	Perfluorononanoic acid	5.00	U	3.14	5.00	10.0
1763-23-1	Perfluorooctanesulfonic acid	5.00	U	3.85	5.00	10.0
335-67-1	Perfluorooctanoic acid	5.00	U	2.28	5.00	10.0
376-06-7	Perfluorotetradecanoic acid	5.00	U	3.16	5.00	10.0
72629-94-8	Perfluorotridecanoic acid	5.00	U	2.56	5.00	10.0
2058-94-8	Perfluoroundecanoic acid	5.00	U	2.52	5.00	10.0

Report No:	220073108	Client Sample ID: GL-POTABLE-22	
Collect Date:	07/28/20 Time: 1415	GCAL Sample ID: 22007310808	
Matrix:	Water % Moisture: NA	Instrument ID: QQQ2	
Sample Amt:	125 mL	Lab File ID: 2200804A_52.d	
Injection Vol.:	1.0 (µL)	GC Column: ACC-C18-30M ID 2.1 ((mm)
Prep Final Vol.:	1000 (µL)	Dilution Factor: 1 Analyst: BMH	
Prep Date:	08/03/20	Analysis Date: 08/05/20 Time: 0504	
Prep Batch:	689113	Analytical Batch: 689424	
Prep Method:	EPA 537 Rev. 1.1	Analytical Method: EPA 537 Rev. 1.1	

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
2991-50-6	NEtFOSAA	6.00	U	2.09	6.00	10.0
2355-31-9	NMeFOSAA	5.00	U	2.63	5.00	10.0
375-73-5	Perfluorobutanesulfonic acid	5.00	U	2.45	5.00	10.0
335-76-2	Perfluorodecanoic acid	5.00	U	2.21	5.00	10.0
307-55-1	Perfluorododecanoic acid	5.00	U	2.17	5.00	10.0
375-85-9	Perfluoroheptanoic acid	5.00	U	2.46	5.00	10.0
355-46-4	Perfluorohexanesulfonic acid	5.00	U	2.89	5.00	10.0
307-24-4	Perfluorohexanoic acid	5.00	U	2.27	5.00	10.0
375-95-1	Perfluorononanoic acid	5.00	U	3.14	5.00	10.0
1763-23-1	Perfluorooctanesulfonic acid	5.00	U	3.85	5.00	10.0
335-67-1	Perfluorooctanoic acid	5.00	U	2.28	5.00	10.0
376-06-7	Perfluorotetradecanoic acid	5.00	U	3.16	5.00	10.0
72629-94-8	Perfluorotridecanoic acid	5.00	U	2.56	5.00	10.0
2058-94-8	Perfluoroundecanoic acid	5.00	U	2.52	5.00	10.0

Report No:	220073108		Client Sample ID:	GL-POTABLE-13
Collect Date:	07/28/20 Time: 1514		GCAL Sample ID:	22007310809
Matrix:	Water % Moisture: NA		Instrument ID:	QQQ2
Sample Amt:	125 mL		Lab File ID:	2200804A_53.d
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	1000 ((µL)	Dilution Factor:	1 Analyst: BMH
Prep Date:	08/03/20		Analysis Date:	08/05/20 Time: 0517
Prep Batch:	689113		Analytical Batch:	689424
Prep Method:	EPA 537 Rev. 1.1		Analytical Method:	EPA 537 Rev. 1.1

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
2991-50-6	NEtFOSAA	6.00	U	2.09	6.00	10.0
2355-31-9	NMeFOSAA	5.00	U	2.63	5.00	10.0
375-73-5	Perfluorobutanesulfonic acid	5.00	U	2.45	5.00	10.0
335-76-2	Perfluorodecanoic acid	5.00	U	2.21	5.00	10.0
307-55-1	Perfluorododecanoic acid	5.00	U	2.17	5.00	10.0
375-85-9	Perfluoroheptanoic acid	5.00	U	2.46	5.00	10.0
355-46-4	Perfluorohexanesulfonic acid	5.00	U	2.89	5.00	10.0
307-24-4	Perfluorohexanoic acid	5.00	U	2.27	5.00	10.0
375-95-1	Perfluorononanoic acid	5.00	Ü	3.14	5.00	10.0
1763-23-1	Perfluorooctanesulfonic acid	5.00	U	3.85	5.00	10.0
335-67-1	Perfluorooctanoic acid	5.00	U	2.28	5.00	10.0
376-06-7	Perfluorotetradecanoic acid	5.00	U	3.16	5.00	10.0
72629-94-8	Perfluorotridecanoic acid	5.00	U	2.56	5.00	10.0
2058-94-8	Perfluoroundecanoic acid	5.00	U	2.52	5.00	10.0

Report No:	220073108	Client Sample ID:	GL-FB-072820
Collect Date:	07/28/20 Time: 1525	GCAL Sample ID:	22007310810
Matrix:	Water % Moisture: NA	Instrument ID:	QQQ2
Sample Amt:	125 mL	_ Lab File ID:	2200804A_54.d
Injection Vol.:	1.0 (µL	GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	1000 (µL	Dilution Factor:	1 Analyst: BMH
Prep Date:	08/03/20	Analysis Date:	08/05/20 Time: 0530
Prep Batch:	689113	Analytical Batch:	689424
Prep Method:	EPA 537 Rev. 1.1	Analytical Method:	EPA 537 Rev. 1.1

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
2991-50-6	NEIFOSAA	6.00	U	2.09	6.00	10.0
2355-31-9	NMeFOSAA	5.00	U	2.63	5.00	10.0
375-73-5	Perfluorobutanesulfonic acid	5.00	U	2.45	5.00	10.0
335-76-2	Perfluorodecanoic acid	5.00	U	2.21	5.00	10.0
307-55-1	Perfluorododecanoic acid	5.00	U	2.17	5.00	10.0
375-85-9	Perfluoroheptanoic acid	5.00	U	2.46	5.00	10.0
355-46-4	Perfluorohexanesulfonic acid	5.00	U	2.89	5.00	10.0
307-24-4	Perfluorohexanoic acid	5.00	U	2.27	5.00	10.0
375-95-1	Perfluorononanoic acid	5.00	U	3.14	5.00	10.0
1763-23-1	Perfluorooctanesulfonic acid	5.00	U	3.85	5.00	10.0
335-67-1	Perfluorooctanoic acid	5.00	U	2.28	5.00	10.0
376-06-7	Perfluorotetradecanoic acid	5.00	U	3.16	5.00	10.0
72629-94-8	Perfluorotridecanoic acid	5.00	U	2.56	5.00	10.0
2058-94-8	Perfluoroundecanoic acid	5.00	U	2.52	5.00	10.0

Report No:	220073108		Client Sample ID:	GL-POTABLE-1	16		
Collect Date:	07/28/20 Time: 1605		GCAL Sample ID:	22007310811			
Matrix:	Water % Moisture: NA		Instrument ID:	QQQ2			
Sample Amt:	125 mL		Lab File ID:	2200804A_55.d	l		
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M	ID	2.1	_ (mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1	Analyst:	вмн	
Prep Date:	08/03/20		Analysis Date:	08/05/20	_ Time:	0543	
Prep Batch:	689113		Analytical Batch:	689424			
Prep Method:	EPA 537 Rev. 1.1		Analytical Method:	EPA 537 Rev. 1	.1		

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
2991-50-6	NEtFOSAA	6.00	U	2.09	6.00	10.0
2355-31-9	NMeFOSAA	5.00	U	2.63	5.00	10.0
375-73-5	Perfluorobutanesulfonic acid	5.00	U	2.45	5.00	10.0
335-76-2	Perfluorodecanoic acid	5.00	U	2.21	5.00	10.0
307-55-1	Perfluorododecanoic acid	5.00	U	2.17	5.00	10.0
375-85-9	Perfluoroheptanoic acid	5.00	U	2.46	5.00	10.0
355-46-4	Perfluorohexanesulfonic acid	5.00	U	2.89	5.00	10.0
307-24-4	Perfluorohexanoic acid	5.00	U	2.27	5.00	10.0
375-95-1	Perfluorononanoic acid	5.00	U	3.14	5.00	10.0
1763-23-1	Perfluorooctanesulfonic acid	5.00	U	3.85	5.00	10.0
335-67-1	Perfluorooctanoic acid	5.00	U	2.28	5.00	10.0
376-06-7	Perfluorotetradecanoic acid	5.00	U	3.16	5.00	10.0
72629-94-8	Perfluorotridecanoic acid	5.00	U	2.56	5.00	10.0
2058-94-8	Perfluoroundecanoic acid	5.00	Ü	2.52	5.00	10.0

Report No:	220073108	Client Sample ID:	GL-POTABLE-18
Collect Date:	07/28/20 Time: 1628	GCAL Sample ID:	22007310812
Matrix:	Water % Moisture: NA	Instrument ID:	QQQ2
Sample Amt:	125 mL	_ Lab File ID:	2200804A_56.d
Injection Vol.:	1.0 (µL)	GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	1000 (µL)	Dilution Factor:	1 Analyst: BMH
Prep Date:	08/03/20	Analysis Date:	08/05/20 Time: 0557
Prep Batch:	689113	Analytical Batch:	689424
Prep Method:	EPA 537 Rev. 1.1	Analytical Method:	EPA 537 Rev. 1.1

ANALYTE	RESULT	Q	DL	LOD	LOQ
NEIFOSAA	6.00	U	2.09	6.00	10.0
NMeFOSAA	5.00	U	2.63	5.00	10.0
Perfluorobutanesulfonic acid	5.00	U	2.45	5.00	10.0
Perfluorodecanoic acid	5.00	U	2.21	5.00	10.0
Perfluorododecanoic acid	5.00	U	2.17	5.00	10.0
Perfluoroheptanoic acid	5.00	U	2.46	5.00	10.0
Perfluorohexanesulfonic acid	5.00	U	2.89	5.00	10.0
Perfluorohexanoic acid	5.00	U	2.27	5.00	10.0
Perfluorononanoic acid	5.00	U	3.14	5.00	10.0
Perfluorooctanesulfonic acid	5.00	U	3.85	5.00	10.0
Perfluorooctanoic acid	5.00	U	2.28	5.00	10.0
Perfluorotetradecanoic acid	5.00	U	3.16	5.00	10.0
Perfluorotridecanoic acid	5.00	U	2.56	5.00	10.0
Perfluoroundecanoic acid	5.00	U	2.52	5.00	10.0
	NEtFOSAA NMeFOSAA Perfluorobutanesulfonic acid Perfluorodecanoic acid Perfluoroheptanoic acid Perfluoroheptanoic acid Perfluorohexanesulfonic acid Perfluorohexanoic acid Perfluorononanoic acid Perfluoroctanesulfonic acid Perfluoroctanoic acid Perfluoroctanoic acid Perfluorotetradecanoic acid Perfluorotetradecanoic acid	NEtFOSAA 6.00 NMeFOSAA 5.00 Perfluorobutanesulfonic acid 5.00 Perfluorodecanoic acid 5.00 Perfluorodecanoic acid 5.00 Perfluoroheptanoic acid 5.00 Perfluorohexanesulfonic acid 5.00 Perfluorohexanoic acid 5.00 Perfluorononanoic acid 5.00 Perfluorooctanesulfonic acid 5.00 Perfluorotetradecanoic acid 5.00 Perfluorotetradecanoic acid 5.00 Perfluorotridecanoic acid 5.00	NEtFOSAA 6.00 U NMeFOSAA 5.00 U Perfluorobutanesulfonic acid 5.00 U Perfluorodecanoic acid 5.00 U Perfluorodecanoic acid 5.00 U Perfluoroheptanoic acid 5.00 U Perfluorohexanesulfonic acid 5.00 U Perfluorohexanoic acid 5.00 U Perfluorooctanesulfonic acid 5.00 U Perfluorooctanoic acid 5.00 U Perfluorotetradecanoic acid 5.00 U Perfluorotridecanoic acid 5.00 U	NEtFOSAA 6.00 U 2.09 NMeFOSAA 5.00 U 2.63 Perfluorobutanesulfonic acid 5.00 U 2.45 Perfluorodecanoic acid 5.00 U 2.21 Perfluorododecanoic acid 5.00 U 2.17 Perfluoroheptanoic acid 5.00 U 2.46 Perfluorohexanesulfonic acid 5.00 U 2.89 Perfluorohexanoic acid 5.00 U 3.14 Perfluorooctanesulfonic acid 5.00 U 3.85 Perfluorooctanoic acid 5.00 U 2.28 Perfluorotetradecanoic acid 5.00 U 3.16 Perfluorotridecanoic acid 5.00 U 2.56	NEtFOSAA 6.00 U 2.09 6.00 NMeFOSAA 5.00 U 2.63 5.00 Perfluorobutanesulfonic acid 5.00 U 2.45 5.00 Perfluorodecanoic acid 5.00 U 2.21 5.00 Perfluorodecanoic acid 5.00 U 2.17 5.00 Perfluoroheptanoic acid 5.00 U 2.46 5.00 Perfluorohexanesulfonic acid 5.00 U 2.89 5.00 Perfluorohexanoic acid 5.00 U 2.27 5.00 Perfluoronannoic acid 5.00 U 3.14 5.00 Perfluoroctanesulfonic acid 5.00 U 3.85 5.00 Perfluorotetradecanoic acid 5.00 U 2.28 5.00 Perfluorotetradecanoic acid 5.00 U 2.56 5.00

Report No:	220073108	Client Sample ID: GL-POTABLE-21
Collect Date:	07/29/20 Time: 0912	GCAL Sample ID: 22007310813
Matrix:	Water % Moisture: NA	Instrument ID: QQQ2
Sample Amt:	125 mL	Lab File ID: 2200806A_55.d
Injection Vol.:	1.0 (µL)	GC Column: ACC-C18-30M ID 2.1 (mm
Prep Final Vol.:	1000 (µL)	Dilution Factor: 1 Analyst: BMH
Prep Date:	08/03/20	Analysis Date: 08/07/20 Time: 0628
Prep Batch:	689285	Analytical Batch: 689642
Prep Method:	EPA 537 Rev. 1.1	Analytical Method: EPA 537 Rev. 1.1

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
2991-50-6	NEtFOSAA	6.00	U	2.09	6.00	10.0
2355-31-9	NMeFOSAA	5.00	U	2.63	5.00	10.0
375-73-5	Perfluorobutanesulfonic acid	5.00	U	2.45	5.00	10.0
335-76-2	Perfluorodecanoic acid	5.00	U	2.21	5.00	10.0
307-55-1	Perfluorododecanoic acid	5.00	U	2.17	5.00	10.0
375-85-9	Perfluoroheptanoic acid	5.00	U	2.46	5.00	10.0
355-46-4	Perfluorohexanesulfonic acid	5.00	U	2.89	5.00	10.0
307-24-4	Perfluorohexanoic acid	5.00	U	2.27	5.00	10.0
375-95-1	Perfluorononanoic acid	5.00	U	3.14	5.00	10.0
1763-23-1	Perfluorooctanesulfonic acid	5.00	U	3.85	5.00	10.0
335-67-1	Perfluorooctanoic acid	5.00	U	2.28	5.00	10.0
376-06-7	Perfluorotetradecanoic acid	5.00	U	3.16	5.00	10.0
72629-94-8	Perfluorotridecanoic acid	5.00	U	2.56	5.00	10.0
2058-94-8	Perfluoroundecanoic acid	5.00	U	2.52	5.00	10.0

Report No:	220073108	Client Sample ID:	GL-POTABLE-21-DUP
Collect Date:	07/29/20 Time: 0912	GCAL Sample ID:	22007310814
Matrix:	Water % Moisture: NA	Instrument ID:	QQQ2
Sample Amt:	125 mL	Lab File ID:	2200806A_56.d
Injection Vol.:	1.0 (µL)	GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	1000 (μL)	Dilution Factor:	1 Analyst: BMH
Prep Date:	08/03/20	Analysis Date:	08/07/20 Time: 0641
Prep Batch:	689285	Analytical Batch:	689642
Prep Method:	EPA 537 Rev. 1.1	Analytical Method:	EPA 537 Rev. 1.1

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
2991-50-6	NEtFOSAA	6.00	U	2.09	6.00	10.0
2355-31-9	NMeFOSAA	5.00	U	2.63	5.00	10.0
375-73-5	Perfluorobutanesulfonic acid	5.00	U	2.45	5.00	10.0
335-76-2	Perfluorodecanoic acid	5.00	U	2.21	5.00	10.0
307-55-1	Perfluorododecanoic acid	5.00	U	2.17	5.00	10.0
375-85-9	Perfluoroheptanoic acid	5.00	U	2.46	5.00	10.0
355-46-4	Perfluorohexanesulfonic acid	5.00	U	2.89	5.00	10.0
307-24-4	Perfluorohexanoic acid	5.00	U	2.27	5.00	10.0
375-95-1	Perfluorononanoic acid	5,00	U	3.14	5.00	10.0
1763-23-1	Perfluorooctanesulfonic acid	5.00	U	3.85	5.00	10.0
335-67-1	Perfluorooctanoic acid	5.00	U	2.28	5.00	10.0
376-06-7	Perfluorotetradecanoic acid	5.00	U	3.16	5.00	10.0
72629-94-8	Perfluorotridecanoic acid	5.00	U	2.56	5.00	10.0
2058-94-8	Perfluoroundecanoic acid	5.00	U	2.52	5.00	10.0

Report No:	220073108	Client Sample ID: GL-POTABLE-25	
Collect Date:	07/29/20 Time: 1003	GCAL Sample ID: 22007310815	
Matrix:	Water % Moisture: NA	Instrument ID: QQQ2	
Sample Amt:	125 mL	Lab File ID: 2200806A_57.d	
Injection Vol.:	1.0 (µL)	GC Column: ACC-C18-30M ID 2.1	(mm)
Prep Final Vol.:	1000 (µL)	Dilution Factor: 1 Analyst: BMH	
Prep Date:	08/03/20	Analysis Date: 08/07/20 Time: 0655	
Prep Batch:	689285	Analytical Batch: 689642	
Prep Method:	EPA 537 Rev. 1.1	Analytical Method: EPA 537 Rev. 1.1	

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
2991-50-6	NEtFOSAA	6.00	U	2.09	6.00	10.0
2355-31-9	NMeFOSAA	5.00	U	2.63	5.00	10.0
375-73-5	Perfluorobutanesulfonic acid	5.00	U	2.45	5.00	10.0
335-76-2	Perfluorodecanoic acid	5.00	U	2.21	5.00	10.0
307-55-1	Perfluorododecanoic acid	5.00	U	2.17	5.00	10.0
375-85-9	Perfluoroheptanoic acid	5.00	U	2.46	5.00	10.0
355-46-4	Perfluorohexanesulfonic acid	5.00	U	2.89	5.00	10.0
307-24-4	Perfluorohexanoic acid	5.00	U	2.27	5.00	10.0
375-95-1	Perfluorononanoic acid	5.00	U	3.14	5.00	10.0
1763-23-1	Perfluorooctanesulfonic acid	5.00	U	3.85	5.00	10.0
335-67-1	Perfluorooctanoic acid	5.00	U	2.28	5.00	10.0
376-06-7	Perfluorotetradecanoic acid	5.00	U	3.16	5.00	10.0
72629-94-8	Perfluorotridecanoic acid	5.00	U	2.56	5.00	10.0
2058-94-8	Perfluoroundecanoic acid	5.00	U	2.52	5.00	10.0

Report No:	220073108	Client Sample ID:	GL-FB-072920
Collect Date:	07/29/20 Time: 1005	GCAL Sample ID:	22007310816
Matrix:	Water % Moisture: NA	Instrument ID:	QQQ2
Sample Amt:	125 mL	Lab File ID:	2200806A_58.d
Injection Vol.:	1.0	μL) GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	1000	μL) Dilution Factor:	1 Analyst: BMH
Prep Date:	08/03/20	Analysis Date:	08/07/20 Time: 0708
Prep Batch:	689285	Analytical Batch:	689642
Prep Method:	EPA 537 Rev. 1.1	Analytical Method:	EPA 537 Rev. 1.1

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
2991-50-6	NEtFOSAA	6.00	U	2.09	6.00	10.0
2355-31-9	NMeFOSAA	5.00	U	2.63	5.00	10.0
375-73-5	Perfluorobutanesulfonic acid	5.00	U	2.45	5.00	10.0
335-76-2	Perfluorodecanoic acid	5.00	U	2.21	5.00	10.0
307-55-1	Perfluorododecanoic acid	5.00	U	2.17	5.00	10.0
375-85-9	Perfluoroheptanoic acid	5.00	U	2.46	5.00	10.0
355-46-4	Perfluorohexanesulfonic acid	5.00	U	2.89	5.00	10.0
307-24-4	Perfluorohexanoic acid	5.00	U	2.27	5.00	10.0
375-95-1	Perfluorononanoic acid	5.00	U	3.14	5.00	10.0
1763-23-1	Perfluorooctanesulfonic acid	5.00	U	3.85	5.00	10.0
335-67-1	Perfluorooctanoic acid	5.00	U	2.28	5.00	10.0
376-06-7	Perfluorotetradecanoic acid	5.00	U	3.16	5.00	10.0
72629-94-8	Perfluorotridecanoic acid	5.00	U	2.56	5.00	10.0
2058-94-8	Perfluoroundecanoic acid	5.00	U	2.52	5.00	10.0

Report No:	220073108	Client Sample ID: GL-POTABLE-19
Collect Date:	07/29/20 Time: 1030	GCAL Sample ID: 22007310817
Matrix:	Water % Moisture: NA	Instrument ID: QQQ2
Sample Amt:	125 mL	Lab File ID: 2200806A_59.d
Injection Vol.:	1.0 (µL)	GC Column: ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	1000 (µL)	Dilution Factor: 1 Analyst: BMH
Prep Date:	08/03/20	Analysis Date: 08/07/20 Time: 0721
Prep Batch:	689285	Analytical Batch: 689642
Prep Method:	EPA 537 Rev. 1.1	Analytical Method: EPA 537 Rev. 1.1

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
2991-50-6	NEtFOSAA	6.00	U	2.09	6.00	10.0
2355-31-9	NMeFOSAA	5.00	U	2.63	5.00	10.0
375-73-5	Perfluorobutanesulfonic acid	5.00	U	2.45	5.00	10.0
335-76-2	Perfluorodecanoic acid	5.00	U	2.21	5.00	10.0
307-55-1	Perfluorododecanoic acid	5.00	Ü	2.17	5.00	10.0
375-85-9	Perfluoroheptanoic acid	5.00	Ü	2.46	5.00	10.0
355-46-4	Perfluorohexanesulfonic acid	5.00	U	2.89	5.00	10.0
307-24-4	Perfluorohexanoic acid	5.00	U	2.27	5.00	10.0
375-95-1	Perfluorononanoic acid	5.00	U	3.14	5.00	10.0
1763-23-1	Perfluorooctanesulfonic acid	5.00	U	3.85	5.00	10.0
335-67-1	Perfluorooctanoic acid	5.00	U	2.28	5.00	10.0
376-06-7	Perfluorotetradecanoic acid	5.00	U	3.16	5.00	10.0
72629-94-8	Perfluorotridecanoic acid	5.00	U	2.56	5.00	10.0
2058-94-8	Perfluoroundecanoic acid	5.00	U	2.52	5.00	10.0

Report No:	220073108	Client Sample ID:	GL-POTABLE-14
Collect Date:	07/29/20 Time: 1322	GCAL Sample ID:	22007310818
Matrix:	Water % Moisture: NA	Instrument ID:	QQQ2
Sample Amt:	125 mL	Lab File ID:	2200806A_60.d
Injection Vol.:	1.0 (μΙ	.) GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	1000 (µl	.) Dilution Factor:	1 Analyst: BMH
Prep Date:	08/03/20	Analysis Date:	08/07/20 Time: 0734
Prep Batch:	689285	Analytical Batch:	689642
Prep Method:	EPA 537 Rev. 1.1	Analytical Method:	EPA 537 Rev. 1.1

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
2991-50-6	NEtFOSAA	6.00	U	2.09	6.00	10.0
2355-31-9	NMeFOSAA	5.00	U	2.63	5.00	10.0
375-73-5	Perfluorobutanesulfonic acid	5.00	U	2.45	5.00	10.0
335-76-2	Perfluorodecanoic acid	5.00	U	2.21	5.00	10.0
307-55-1	Perfluorododecanoic acid	5.00	U	2.17	5.00	10.0
375-85-9	Perfluoroheptanoic acid	5.00	U	2.46	5.00	10.0
355-46-4	Perfluorohexanesulfonic acid	5.00	U	2.89	5.00	10.0
307-24-4	Perfluorohexanoic acid	2.37	j	2.27	5.00	10.0
375-95-1	Perfluorononanoic acid	5.00	U	3.14	5.00	10.0
1763-23-1	Perfluorooctanesulfonic acid	5.00	U	3.85	5.00	10.0
335-67-1	Perfluorooctanoic acid	5.00	U	2.28	5.00	10.0
376-06-7	Perfluorotetradecanoic acid	5.00	U	3.16	5.00	10.0
72629-94-8	Perfluorotridecanoic acid	5.00	U	2.56	5.00	10.0
2058-94-8	Perfluoroundecanoic acid	5.00	Ü	2.52	5.00	10.0

Report No:	220073108		Client Sample ID:	GL-POTABLE-15
Collect Date:	07/29/20 Time: 1355		GCAL Sample ID:	22007310819
Matrix:	Water % Moisture: NA		Instrument ID:	QQQ2
Sample Amt:	125 mL		Lab File ID:	2200806A_61.d
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	1000 ((µL)	Dilution Factor:	1 Analyst: BMH
Prep Date:	08/03/20		Analysis Date:	08/07/20 Time: 0747
Prep Batch:	689285		Analytical Batch:	689642
Prep Method:	EPA 537 Rev. 1.1		Analytical Method:	EPA 537 Rev. 1.1

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
2991-50-6	NEtFOSAA	6.00	U	2.09	6.00	10.0
2355-31-9	NMeFOSAA	5.00	U	2.63	5.00	10.0
375-73-5	Perfluorobutanesulfonic acid	5.00	U	2.45	5.00	10.0
335-76-2	Perfluorodecanoic acid	5.00	U	2.21	5.00	10.0
307-55-1	Perfluorododecanoic acid	5.00	U	2.17	5.00	10.0
375-85-9	Perfluoroheptanoic acid	5.00	U	2.46	5.00	10.0
355-46-4	Perfluorohexanesulfonic acid	5.00	U	2.89	5.00	10.0
307-24-4	Perfluorohexanoic acid	5.00	U	2.27	5.00	10.0
375-95-1	Perfluorononanoic acid	5.00	U	3.14	5.00	10.0
1763-23-1	Perfluorooctanesulfonic acid	5.00	U	3.85	5.00	10.0
335-67-1	Perfluorooctanoic acid	5.00	U	2.28	5.00	10.0
376-06-7	Perfluorotetradecanoic acid	5.00	U	3.16	5.00	10.0
72629-94-8	Perfluorotridecanoic acid	5.00	U	2.56	5.00	10.0
2058-94-8	Perfluoroundecanoic acid	5.00	U	2.52	5.00	10.0

Report No:	220073108		Client Sample ID:	GL-POTABLE-26
Collect Date:	07/29/20 Time: 1420		GCAL Sample ID:	22007310820
Matrix:	Water % Moisture: NA		Instrument ID:	QQQ2
Sample Amt:	125 mL		Lab File ID:	2200806A_63.d
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1 Analyst: BMH
Prep Date:	08/03/20		Analysis Date:	08/07/20 Time: 0814
Prep Batch:	689285		Analytical Batch:	689642
Prep Method:	EPA 537 Rev. 1.1		Analytical Method:	EPA 537 Rev. 1.1

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
2991-50-6	NEtFOSAA	6.00	U	2.09	6.00	10.0
2355-31-9	NMeFOSAA	5.00	U	2.63	5.00	10.0
375-73-5	Perfluorobutanesulfonic acid	5.00	U	2.45	5.00	10.0
335-76-2	Perfluorodecanoic acid	5.00	U	2.21	5.00	10.0
307-55-1	Perfluorododecanoic acid	5.00	U	2.17	5.00	10.0
375-85-9	Perfluoroheptanoic acid	5.00	U	2.46	5.00	10.0
355-46-4	Perfluorohexanesulfonic acid	5.00	U	2.89	5.00	10.0
307-24-4	Perfluorohexanoic acid	5.00	U	2.27	5.00	10.0
375-95-1	Perfluorononanoic acid	5.00	U	3.14	5.00	10.0
1763-23-1	Perfluorooctanesulfonic acid	5.00	U	3.85	5.00	10.0
335-67-1	Perfluorooctanoic acid	5.00	Ü	2.28	5.00	10.0
376-06-7	Perfluorotetradecanoic acid	5.00	U	3.16	5.00	10.0
72629-94-8	Perfluorotridecanoic acid	5.00	U	2.56	5.00	10.0
2058-94-8	Perfluoroundecanoic acid	5.00	U	2.52	5.00	10.0

DATA VALIDATION WORKSHEET

Reviewer:	Naoum	Tavantzis	_ Per- and PolyHuorinated Compounds by LC/MS/MS	Project Name:	G	rand Led	ıge
Date:	8/20	0/2020		Project Number:	-	6055217	2
DV Level:	II I	II IV		Laboratory:	Pac	e Gulf C	oast
Review Docu	ıment:			SDG No.:	2	2007310)8
<u>X</u> Natio	onal Functi	ional Guide	lines for Organic Data Review	Test Name:		PFAS	
DOD	QSM 5.1,	Table B-15					
$\underline{\underline{X}}$ Meth	nod 537 Re	ev. 1.1					
				_			
1.0 Laborat	ory Delive	rables			Yes	No	NA
1.1	Do Chain	-of-Custod	y forms list all samples that were analyzed?		X		
1.2	Are all C	hain-of-Cu	stody forms signed, indicating sample chain-of-custody was maintained?	?	X		
1.2	Do sampl	le preservat	ion, collection and storage condition meet method requirement? 4±2°C		X		
1.3	If sample	s were rece	ived with the cooler temperature exceeding 6°C, then flag J(+)/UJ(-). If	>20°C, J(+)/X(-)	Λ		
1.4	Do the tr	affic Repor	ts, chain-of-custody, and lab narrative indicate any problems with sam	ple receipt, condition		N/	
1.4	of sample	es, analytica	al problems or special circumstances affecting the quality of the data?			X	
Notes:							
2.0 Holding	Times				Yes	No	NA
2.1	Have any	technical l	olding times, determined from date of sampling to date of analysis, been	n exceeded? If yes,		*7	
2.1			on: 14 days; Analysis: 40 days.	•		X	
2.2			olding time grossly (twice the holding time) been exceeded? If yes, J(+	·)/X(-) .		X	
Notes:							
3.0 Blanks (I	Laborator	y and Field			Yes	No	NA
3.1	Were met	thod blanks	(MB) prepared at the appropriate frequency (one per 20 samples, per ba	atch per matrix?)	X		

Do any instrument/method blanks have positive results?

Do any field equipment blanks/trip blanks have positive results?

3.2

Notes:

4.0 Initial a	Yes	No	NA		
4.1	For each calibration standard, was each analyte calculated within 70%-130% of the true value, RSD \leq 20%, or $r^2 \geq 0.99$?	X			
4.2	Was the retention time window for each analyte and surrogate set using the midpoint standard of the curve?	X			
4.3	Was the relative retention time of each analyte within laboratory control limits?	X			
4.4	Was a second source calibration verification (ICV) analyzed for each calibration curve? If no, flag "X".	X			
4.5	Were continuing calibration standards analyzed every ten samples and at the end of the sequence? If no, flag	X			
4.6	For each calibration standard used for quantitation, was the S/N Ratio ≥10:1 and for all analytes with promulgated standards was the confirmation ion at a S/N at 3:1? (Table B-15, non-DW matrices)			X	
For initial ca	or initial calibration: 70%-130%, RSD ≤20%, or r2≥0.99. J(+)/UJ(-)				
For ICV/CC	CV: %D>30%, Positive: J(+), Negative:J(+)/UJ(-).				

Notes:

5.0 Laborat	ory Control Sample (LCS)	Yes	No	NA
5.1	Were LCS/LCSD analyzed at required frequency (one per 20 samples per batch) for each matrix?	X		
5.2	Are there any %R for LCS/LCSD recoveries outside the laboratory QC limits(lab default is 70%-130%)?		v	
3.2	Action: If Yes, for %R >130, J+(+) only; for %R 30%-70%, J-(+)/UJ(-), and %R<30%, J-(+)/X(-).		Λ	
5.3	Are there any RPD for LCS/LCSD recoveries outside the QC limits? If Yes, J(+) only.		X	

Notes:

6.0 Surrog	ate Recovery/Intern	al Standard Area C	ount/Extracted Internal Stand	ards (For Table B-15 Matrices)	Yes	No	NA
6.1	Are recoveries w	Are recoveries within acceptance criteria for all samples and method blanks?					
6.2	If No in Section 6	.1, are these sample(s) or method blank(s) reanalyzed	?			X
	If No in Section 6	.2, is any sample dilu	tion factor greater than 10? (rec	overies may be diluted out.)			
6.3		<10%	low	high			v
0.5	Positives	J-	J-	J+			Λ
	Non-detects	X	UJ	None			
	Has the Extracted	/Injected Standard are	a count been met for all quality	control and field samples? (50%-150%)			
6.4		<20%	low	high	v		
0.4	Positives	J+	J+	J-	A		
	Non-detects	X	UJ	None			

Notes:

7.0 Matrix	Spike/Matrix Sp	ike Duplicate (MS/I	MSD)		7	'es	No	NA
7.1	Were matrix sp	Were matrix spikes analyzed at required frequency (one per 20 samples per batch) for each matrix?						
	Are there any of	%R for matrix spike	and matrix spike duplicate rec	overies outside the laboratory QC limits	?			
7.2	%Recovery:	<10%	10%-70%	>130%		X		
	Action:	J-(+)/X(-)	J-(+)/UJ(-)	J+(+) only		- 1		
7.3	Are there any I	RPD for matrix spike	and matrix spike duplicate re	ecoveries outside the QC limits? (±30%)			v	
7.3	Action: No action is required based on MS/MSd failure alone. Note in the report and use professional						Λ	
Notes:								

8.0 Field/La	8.0 Field/Laboratory Duplicates			
8.1	Acceptable field duplicate results? If no, J(+) parent sample/field duplicate only.	X		
Notes:	All field duplicate results were non-detect; no field duplicate evaluation form was created since all results were NI)		

9	0.0 Instrume	Yes	No	NA	
	9.1	Was an instrument sensitivity check analyzed prior to analysis and every 12 hours? If not X(+/-)	X		
	9.2	Were analyte concentrations at the LOQ for the ISC and within $\pm 30\%$ of their true values? If not (J(+)/UJ(-)	X		

Notes:

10.0 Compou	and Identification/Tune and Detection Limit Verification	Yes	No	NA
101	Do detection limits meet those required by the project QAPP and were they properly adjusted for dilution factors and moisture (including adjustment of wet weight aliquot)?	X		
10.2	Was a mass calibration performed daily prior to analysis?			

Notes:

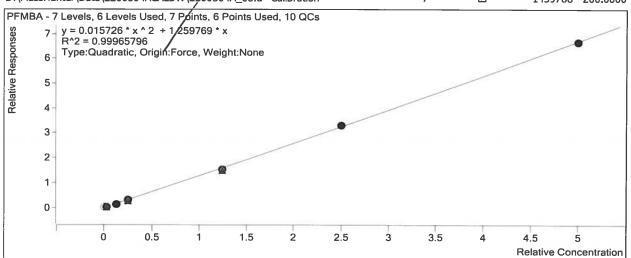
11.0 Data Co	ompleteness	Yes	No	NA
11.1	Is % completeness within the control limits? (Control limit 95% _{aq} and 90% _{so})	X		
11.1.1	Number of samples: <u>18</u>		-	
11.1.2	Number of target compounds in each analysis: <u>14</u>			
11.1.3	Number of results "X" or "R" flagged results: 0			

QQQ2 Run Log

			35 17			Comment	MRA, QQQ2; Meoh SHOT/INSTRUMENT IDLE	MRA,QQQ2;Cal	ВМН, QQQ2; Cal	ВМН, QQQ2; Cal	BMH,QQQ2;Cal	BMH,QQQ2;Cal	ВМН, QQQ2; Cal	ВМН, QQQ2; Cal	BMH,QQQ2;MeOH SHOT/INSTRUMENT IDLE	ВМН, QQQ2; Cal	ВМН, QQQ2; Cal	BMH,QQQ2;Cal	BMH,QQQ2;MeOH SHOT/INSTRUMENT IDLE	BMH,QQQ2;MeOH SHOT/INSTRUMENT IDLE	BMH,QQQ2;MeOH SHOT/INSTRUMENT IDLE	BMH,QQQ2;MeOH SHOT/INSTRUMENT IDLE	BMH,QQQ2;689356	BMH,QQQ2;689356	BMH,QQQ2;689356	ВМН, QQQ2;689356
						Acq. Date-Time	8/4/2020 17:29	8/4/2020 17:42	8/4/2020 17:55	8/4/2020 18:08	8/4/2020 18:22	8/4/2020 18:35	8/4/2020 18:48	8/4/2020 19:01	8/4/2020 19:27	8/4/2020 19:41	8/4/2020 19:54	8/4/2020 20:07	8/4/2020 20:30	8/4/2020 20:43	8/4/2020 20:56	8/4/2020 21:09	8/4/2020 21:23	8/4/2020 21:36	8/4/2020 21:49	8/4/2020 22:02
Expiration:	8/6/2020	1/30/2021	1/25/2021	1/30/2021	1/31/2021	Туре	MeOH Shot	Cal	MeOH Shot	Sample	ОС	ďс	MeOH Shot	MeOH Shot	MeOH Shot	MeOH Shot	Sample	αc	QC	Sample						
BMH QQQ2 2200804A 2200804ACAL/2200804ACALDW	012-42-3	012-40-2	012-38-3	012-40-3	012-41-1	Data File	2200804A_01.d	2200804A_02.d	2200804A_03.d	2200804A_04.d	2200804A_05.d	2200804A_06.d	2200804A_07.d	2200804A_08.d	2200804A_09.d	2200804A_10.d	2200804A_11.d	2200804A_12.d	2200804A_13.d	2200804A_14.d	2200804A_15.d	2200804A_16.d	2200804A_17.d	2200804A_18.d	2200804A_19.d	2200804A_20.d
Analyst: Instrument: Batch: Current ICAL Bath:	20mM Amm Acetate Methanol	Calibration Std	ICV Std	EIS Mix	IIS Mix	Name	MeOH Shot	1201	1202	1203	1204	1205	1206	1207	MeOH Shot	1500	1600	1450	MeOH Shot	MeOH Shot	MeOH Shot	MeOH Shot	2068787	2068788	2068789	22008042701

Dil.

нн	ન ન	Н	1	Н	П	1	1	5	Т	Н	П	П	1	7	Н	Н	П	ب ا	1	1	н	1	1	1	1	П	1	7	1	1	П
BMH,QQQ2;689356 BMH,QQQ2;689356	BMH,QQQ2;689356 BMH,QQQ2;689356	ВМН, QQQ2;689356	ВМН, QQQ2;689356	BMH,QQQ2;689356	BMH,QQQ2;689356	BMH,QQQ2;689356	BMH,QQQ2;CCV	BMH,QQQ2;689356	BMH,QQQ2;CCV	BMH,QQQ2;689113	BMH,QQQ2;CCV	BMH,QQQ2;689113	BMH,QQQ2;689113	BMH,QQQ2;689113	BMH,QQQ2;689113	BMH,QQQ2;689113	ВМН, QQQ2;689113														
8/4/2020 22:15	8/4/2020 22:42 8/4/2020 22:55	8/4/2020 23:08	8/4/2020 23:21	8/4/2020 23:34	8/4/2020 23:48	8/5/2020 0:01	8/5/2020 0:14	8/5/2020 0:27	8/5/2020 0:40	8/5/2020 0:53	8/5/2020 1:07	8/5/2020 1:20	8/5/2020 1:33	8/5/2020 1:46	8/5/2020 1:59	8/5/2020 2:12	8/5/2020 2:26	8/5/2020 2:39	8/5/2020 2:52	8/5/2020 3:05	8/5/2020 3:18	8/5/2020 3:32	8/5/2020 3:45	8/5/2020 3:58	8/5/2020 4:11	8/5/2020 4:24	8/5/2020 4:37	8/5/2020 4:51	8/5/2020 5:04	8/5/2020 5:17	8/5/2020 5:30
Sample	Sample Sample	Sample	Sample	Sample	Sample	Sample	ďς	Sample	σc	Sample	gc	QC	Sample	QC	σς	σc	Sample	Sample	Sample	Sample	Sample	Sample									
2200804A_21.d 2200804A_22.d	2200804A_23.d 2200804A_24.d	2200804A_25.d	2200804A_26.d	2200804A_27.d	2200804A_28.d	2200804A_29.d	2200804A_30.d	2200804A_31.d	2200804A_32.d	2200804A_33.d	2200804A_34.d	2200804A_35.d	2200804A_36.d	2200804A_37.d	2200804A_38.d	2200804A_39.d	2200804A_40.d	2200804A_41.d	2200804A_42.d	2200804A_43.d	2200804A_44.d	2200804A_45.d	2200804A_46.d	2200804A_47.d	2200804A_48.d	2200804A_49.d	2200804A_50.d	2200804A_51.d	2200804A_52.d	2200804A_53.d	2200804A_54.d
22008042702 22008042703	22008042704 22008042705	22008042706	22008042707	22008042708	22008042709	22008042710	1400	22008042701 x5	1400	2067457	2067458	2067459	22007286701	22007286801	22007286901	22007292201	22007292202	22007292203	22007292301	22007292302	22007310801	22007310802	22007310803	22007310804	1400	22007310805	22007310806	22007310807	22007310808	22007310809	22007310810


1	1	ᆏ	Н	Н	₽	П	Ц	Н	П	1	П	П	ᆏ	Н	Н	П
ВМН, QQQ2;689113	BMH,QQQ2;689113	ВМН, QQQ2; 689294	ВМН, QQQ2; 689294	ВМН, QQQ2; 689294	ВМН, QQQ2; 689294	ВМН, QQQ2; ССV	ВМН, QQQ2;22007226901	ВМН, QQQ2;22007226901	ВМН, QQQ2;22007226901	BMH,QQQ2;22007226901	BMH,QQQ2;22007226901	ВМН, QQQ2;22007226901	ВМН, QQQ2;22007226901	BMH,QQQ2;689356	вмн, додог; ссу	BMH,QQQ2;MeOH SHOT/INSTRUMENT IDLE
8/5/2020 5:43	8/5/2020 5:57	8/5/2020 6:10	8/5/2020 6:23	8/5/2020 6:36	8/5/2020 6:49	8/5/2020 7:02	8/5/2020 7:16	8/5/2020 7:29	8/5/2020 7:42	8/5/2020 7:55	8/5/2020 8:08	8/5/2020 8:21	8/5/2020 8:35	8/5/2020 8:48	8/5/2020 9:01	8/5/2020 9:14
Sample	Sample	Sample	ος	σc	Sample	σc	Sample	σc	σς	Sample	Sample	Sample	Sample	ος	σc	MeOH Shot
2200804A_55.d	2200804A_56.d	2200804A_57.d	2200804A_58.d	2200804A_59.d	2200804A_60.d	2200804A_61.d	2200804A_62.d	2200804A_63.d	2200804A_64.d	2200804A_65.d	2200804A_66.d	2200804A_67.d	2200804A_68.d	2200804A_69.d	2200804A_70.d	2200804A_71.d
22007310811	22007310812	2068440	2068441	2068442	22007252301	1450	2069400	2069401	2069402	22007226901 x1000 DIA	6901 x1000 Dup	6901 ×1000 MS	22007226901 x500 DIA	2068789	1400	MeOH Shot

Calibration STD	Cal Type	ι	.evel	Enabled	Response	Exp Conc (ng/mL)	R
D:\MassHunter\Data\2200804ACALDW\2200804A_08.d	Calibration		7	Ø	654446	177.0000	0.686
PFBS - 7 Levels, 6 Levels Used, 7 Points, 6 Points Used	d, 10 QCs						
y = 0.014822 * x ^ 2 + 0.621463 * x							
§ 3 R^2 = 0.99983253 ✓						•	
\$\frac{9}{2} \text{y} = 0.014822 * x ^2 + \text{y} \cdot 621463 * x \\ \text{R}^2 = 0.99983253 \text{Type:Quadratic, Origin:Force, Weight:None} \\ \text{2.75} \text{2.25} \\ \text{2.25} \text{2.25} \\ \text{2.25} \text{2.275} \text{2.25} \\ \text{2.25} \text							
<u>د 2.5 - </u>							
2.25							
<u>a</u> 2							
1.75 1.5							
1.25 -	•						
1-							
0.75							
0.5-							
0.25							
0-						i	
-0.25			_				
0 0.5 1 1.	5 2	2.5	3	3.5	4	4.5	
					Relative Cor	ncentration	

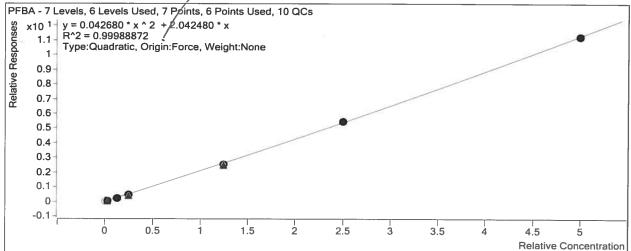
Target Compound

PFMBA

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200804ACALDW\2200804A_02.d	Calibration	1		3086	0.5000	1.1459
D:\MassHunter\Data\2200804ACALDW\2200804A_03.d	Calibration	2		7947	1.2500	1.0766
D:\MassHunter\Data\2200804ACALDW\2200804A_04.d	Calibration	3	☑	32704	5.0000	1.0623
D:\MassHunter\Data\2200804ACALDW\2200804A_05.d	Calibration	4		70630	10.0000	1.1730
D:\MassHunter\Data\2200804ACALDW\2200804A_06.d	Calibration	5	☑	371046	50.0000	1.2170
D:\MassHunter\Data\2200804ACALDW\2200804A_07.d	Calibration	6	☑	750032	100.0000	1.3253
D:\MassHunter\Data\2200804ACALDW\2200804A_08.d		7		1439788	200.0000	1.3361

Batch Data Path Analysis Time Report Time Last Calib Update

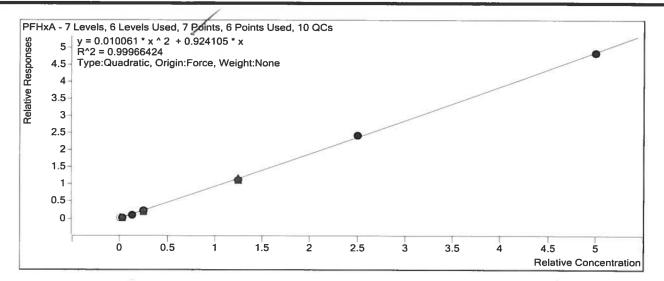
D:\MassHunter\Data\2200804ACALDW\QuantResults\2200804A.batch.bin 8/5/2020 4:32 PM 8/5/2020 4:35 PM 8/5/2020 7:24 AM


Analyst Name Reporter Name Batch State

GCAL\lcms GCAL\lcms Processed

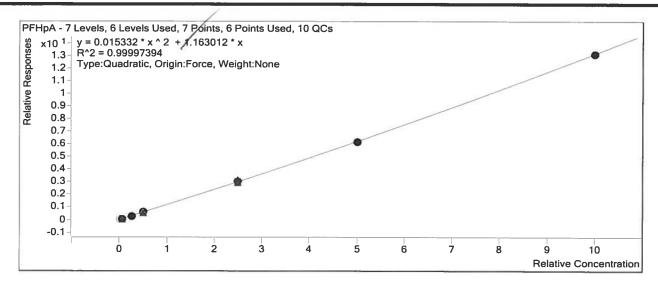
Calibration Info Target Compound

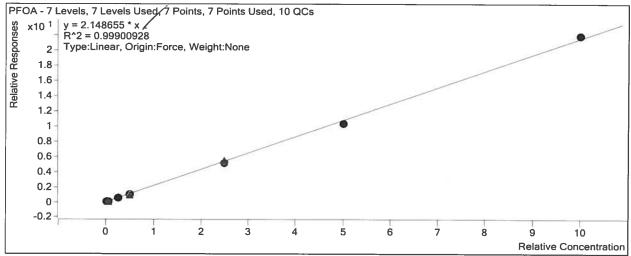
PFBA


					Exp Conc	
Calibration STD	Cal Type	Level	Enabled	Response	(ng/mL)	RF
D:\MassHunter\Data\2200804ACALDW\2200804A_02.d	Calibration	1		5109	0.5000	1.8971
D:\MassHunter\Data\2200804ACALDW\2200804A_03.d	Calibration	2	Ø	13746	1.2500	1.8622
D:\MassHunter\Data\2200804ACALDW\2200804A_04.d	Calibration	3	Ø	56262	5.0000	1.8274
D:\MassHunter\Data\2200804ACALDW\2200804A_05.d	Calibration	4	☑	116436	10.0000	1.9338
D:\MassHunter\Data\2200804ACALDW\2200804A_06.d	Calibration	5	☑	621599	50.0000	2.0388
D:\MassHunter\Data\2200804ACALDW\2200804A_07.d	Calibration	6	\square	1230374	100.0000	2.1740
D:\MassHunter\Data\2200804ACALDW\2200804A_08.d	Calibration	7	Ø	2428559	200.0000	2.2537

Target Compound

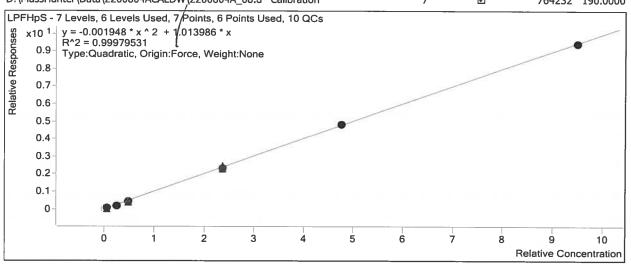
PFMPA

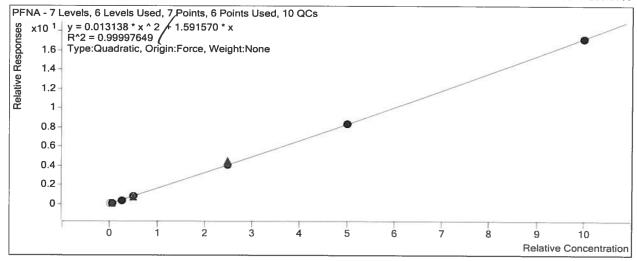

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200804ACALDW\2200804A_02.d	Calibration	1		2810	0.5000	1.0434
D:\MassHunter\Data\2200804ACALDW\2200804A_03.d	Calibration	2	7	7213	1.2500	0.9772
D:\MassHunter\Data\2200804ACALDW\2200804A_04.d	Calibration	3	Ø	29686	5.0000	0.9642
D:\MassHunter\Data\2200804ACALDW\2200804A_05.d	Calibration	4	☑	61993	10.0000	1.0296
D:\MassHunter\Data\2200804ACALDW\2200804A_06.d	Calibration	5	Ø	332083	50.0000	1.0892
D:\MassHunter\Data\2200804ACALDW\2200804A_07.d	Calibration	6	$\overline{\mathbf{Z}}$	661552	100.0000	1.1689
D:\MassHunter\Data\2200804ACALDW\2200804A_08.d	Calibration	7	☑	1309263	200.0000	1.2150


Target Compound

LPFPeS

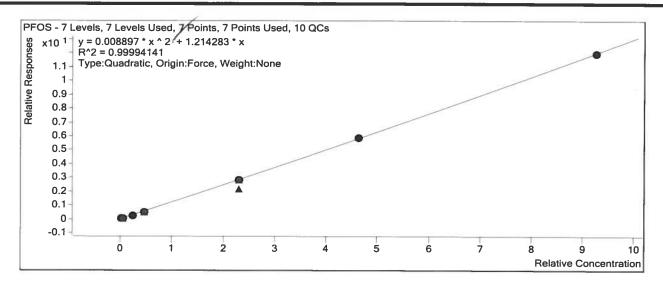
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200804ACALDW\2200804A_02.d	Calibration	1		1693	0.4700	0.8729
$\label{lem:decomposition} D:\mbox{\sc MassHunter}\mbox{\sc Data}\mbox{\sc 2200804ACALDW}\mbox{\sc 2200804A_03.d}$	Calibration	2	Ø	3721	1.1800	0.7011
D:\MassHunter\Data\2200804ACALDW\2200804A_04.d	Calibration	3	☑	15597	4.7000	0.7187
D:\MassHunter\Data\2200804ACALDW\2200804A_05.d	Calibration	4	\square	33891	9.4000	0.7915
D:\MassHunter\Data\2200804ACALDW\2200804A_06.d	Calibration	5	Ø	179054	47.0000	0.8721

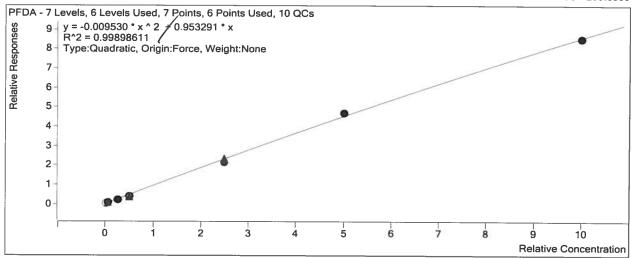

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200804ACALDW\2200804A_07.d	Calibration	6		801153	100.0000	2.0529
D:\MassHunter\Data\2200804ACALDW\2200804A_08.d	Calibration	7	\square	1545435	200.0000	2.1789


Target Compound

LPFHpS

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200804ACALDW\2200804A_02.d	Calibration	1		1784	0.4750	0.9103
D:\MassHunter\Data\2200804ACALDW\2200804A_03.d	Calibration	2	Ø	4726	1.1900	0.8829
D:\MassHunter\Data\2200804ACALDW\2200804A_04.d	Calibration	3	Ø	18120	4.7500	0.8261
D:\MassHunter\Data\2200804ACALDW\2200804A_05.d	Calibration	4	7	37449	9.5000	0.8654
D:\MassHunter\Data\2200804ACALDW\2200804A_06.d	Calibration	5	Ø	204463	47.5000	0.9853
D:\MassHunter\Data\2200804ACALDW\2200804A_07.d	Calibration	6	7	403606	95.0000	1.0175
D:\MassHunter\Data\2200804ACALDW\2200804A_08.d	Calibration	7		764232	190.0000	0.9943

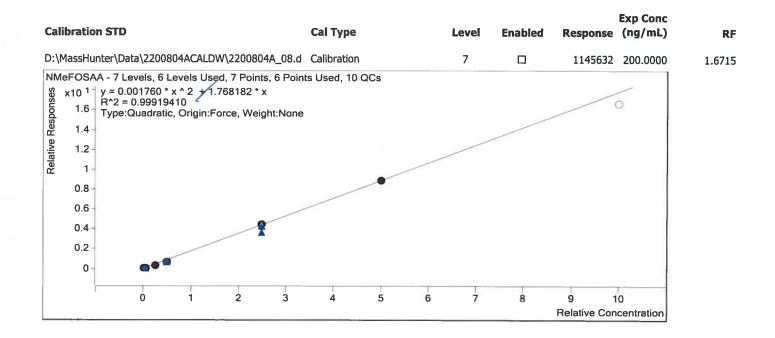

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200804ACALDW\2200804A_04.d	Calibration	3	☑	28052	5.0000	1.4192
D:\MassHunter\Data\2200804ACALDW\2200804A_05.d	Calibration	4	☑	62502	10.0000	1.4912
D:\MassHunter\Data\2200804ACALDW\2200804A_06.d	Calibration	5	Ø	325544	50.0000	1.6309
D:\MassHunter\Data\2200804ACALDW\2200804A_07.d	Calibration	6	\square	646958	100.0000	1.6578
D:\MassHunter\Data\2200804ACALDW\2200804A_08.d	Calibration	7		1221937	200.0000	1.7228


Target Compound

PFOS

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200804ACALDW\2200804A_02.d	Calibration	1	Ø	2351	0.4628	1.2312
D:\MassHunter\Data\2200804ACALDW\2200804A_03.d	Calibration	2	☑	5830	1.1600	1.1174
D:\MassHunter\Data\2200804ACALDW\2200804A_04.d	Calibration	3	☑	23358	4.6280	1.0930
D:\MassHunter\Data\2200804ACALDW\2200804A_05.d	Calibration	4	Ø	46289	9.2550	1.0980
D:\MassHunter\Data\2200804ACALDW\2200804A_06.d	Calibration	5	abla	246455	46.2800	1.2190
D:\MassHunter\Data\2200804ACALDW\2200804A_07.d	Calibration	6		488577	92.5500	1.2643
D:\MassHunter\Data\2200804ACALDW\2200804A_08.d	Calibration	7	Ø	970287	185.1000	1.2958

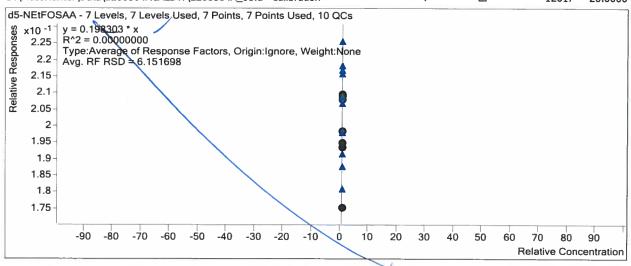
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200804ACALDW\2200804A_06.d	Calibration	5	☑	158653	50.0000	0.8594
D:\MassHunter\Data\2200804ACALDW\2200804A_07.d	Calibration	6		316301	100.0000	0.9349
D:\MassHunter\Data\2200804ACALDW\2200804A_08.d	Calibration	7	\square	586295	200.0000	0.8554

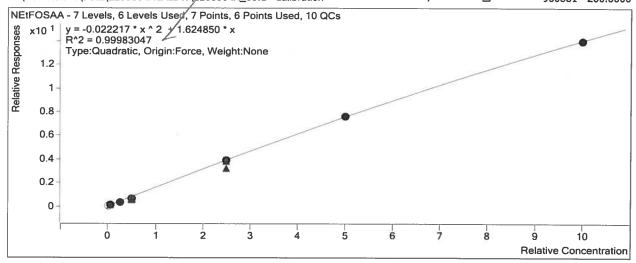


Exti	racted	ISTD
------	--------	------

M2PFDA

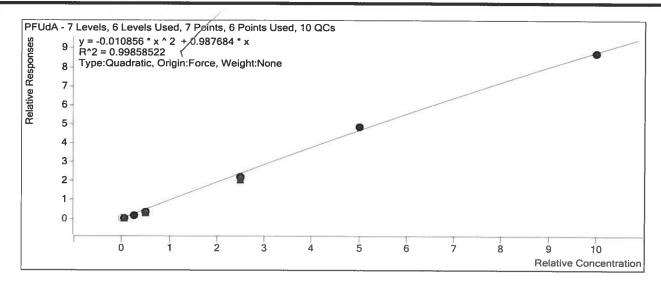
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200804ACALDW\2200804A_02.d	Calibration	1	☑	66827	20.0000	3341.3714
D:\MassHunter\Data\2200804ACALDW\2200804A_03.d	Calibration	2	\square	74232	20.0000	3711.5918
D:\MassHunter\Data\2200804ACALDW\2200804A_04.d	Calibration	3	7	75515	20.0000	3775.7744
D:\MassHunter\Data\2200804ACALDW\2200804A_05.d	Calibration	4	Ø	76552	20.0000	3827.6204
D:\MassHunter\Data\2200804ACALDW\2200804A_06.d	Calibration	5	☑	73847	20.0000	3692.3629
D:\MassHunter\Data\2200804ACALDW\2200804A_07.d	Calibration	6		67662	20.0000	3383.1064
D:\MassHunter\Data\2200804ACALDW\2200804A_08.d	Calibration	7	Ø	68537	20.0000	3426.8684
Target Compound	LPFNS					

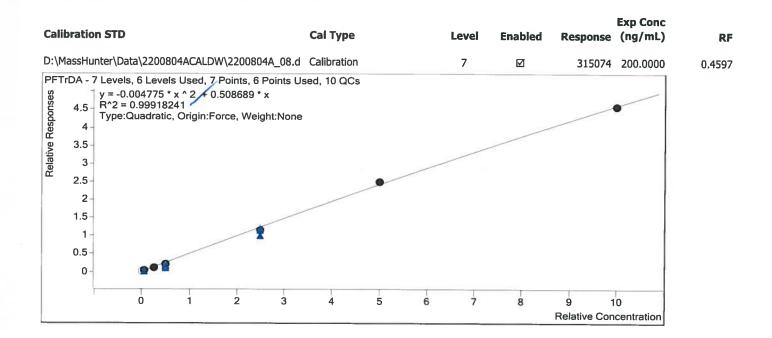

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200804ACALDW\2200804A_02.d	Calibration	1		1508	0.4800	0.7615
D:\MassHunter\Data\2200804ACALDW\2200804A_03.d	Calibration	2	☑	4298	1.2000	0.7963
D:\MassHunter\Data\2200804ACALDW\2200804A_04.d	Calibration	3	₫	17294	4.8000	0.7802
D:\MassHunter\Data\2200804ACALDW\2200804A_05.d	Calibration	4	☑	36566	9.6000	0.8362
D:\MassHunter\Data\2200804ACALDW\2200804A_06.d	Calibration	5	☑	195857	48.0000	0.9340


Instrument ISTD

d5-NEtFOSAA

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200804ACALDW\2200804A_02.d	Calibration	1	\square	13997	20.0000	0.2095
D:\MassHunter\Data\2200804ACALDW\2200804A_03.d	Calibration	2	☑	15424	20.0000	0.2078
D:\MassHunter\Data\2200804ACALDW\2200804A_04.d	Calibration	3		14712	20.0000	0.1948
D:\MassHunter\Data\2200804ACALDW\2200804A_05.d	Calibration	4	☑	14803	20.0000	0.1934
D:\MassHunter\Data\2200804ACALDW\2200804A_06.d	Calibration	5	☑	14647	20.0000	0.1983
D:\MassHunter\Data\2200804ACALDW\2200804A_07.d	Calibration	6		14142	20.0000	0.2090
D:\MassHunter\Data\2200804ACALDW\2200804A_08.d		7	Ø	12017	20.0000	0.1753

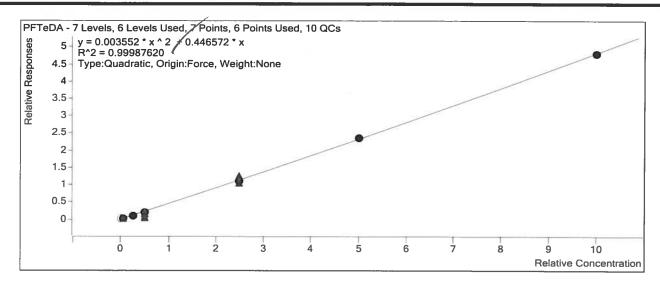

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200804ACALDW\2200804A_05.d	Calibration	4	Ø	51501	10.0000	1.3455
D:\MassHunter\Data\2200804ACALDW\2200804A_06.d	Calibration	5	Ø	290338	50.0000	1.5726
D:\MassHunter\Data\2200804ACALDW\2200804A_07.d	Calibration	6	☑	513988	100.0000	1.5193
D:\MassHunter\Data\2200804ACALDW\2200804A_08.d	Calibration	7	\square	960881	200.0000	1.4020



Target Compound

PFUdA

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200804ACALDW\2200804A_02.d	Calibration	1		1187	0.5000	0.7103
D:\MassHunter\Data\2200804ACALDW\2200804A_03.d	Calibration	2	☑	3271	1.2500	0.7050
D:\MassHunter\Data\2200804ACALDW\2200804A_04.d	Calibration	3		13477	5.0000	0.7139
D:\MassHunter\Data\2200804ACALDW\2200804A_05.d	Calibration	4	☑	27904	10.0000	0.7290
D:\MassHunter\Data\2200804ACALDW\2200804A_06.d	Calibration	5	7	163614	50.0000	0.8862
D:\MassHunter\Data\2200804ACALDW\2200804A_07.d	Calibration	6	✓	327312	100.0000	0.9675
D:\MassHunter\Data\2200804ACALDW\2200804A_08.d	Calibration	7		600426	200.0000	0.8761



Target Compound

NEtFOSA

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	R
D:\MassHunter\Data\2200804ACALDW\2200804A_02.d	Calibration	1		35	0.5000	0.021
D:\MassHunter\Data\2200804ACALDW\2200804A_03.d	Calibration	2	☑	58	1.2500	0.012
D:\MassHunter\Data\2200804ACALDW\2200804A_04.d	Calibration	3	₩.	23	5.0000	0.0012
D:\MassHunter\Data\2200804ACALDW\2200804A_05.d	Calibration	4	Ø	47	10.0000	0.0012
D:\MassHunter\Data\2200804ACALDW\2200804A_06.d	Calibration	5		55	50.0000	0.0003
D:\MassHunter\Data\2200804ACALDW\2200804A_07.d	Calibration	6		80	100.0000	0.0002
D:\MassHunter\Data\2200804ACALDW\2200804A_08.d NEtFOSA - 7 Levels, 6 Levels Used, 7 Points, 6 Points Used, 7 Points, 6 Points, 6 Points Used, 7 Points, 6 Points	Jsed, 10 QCs	7	✓	50	200.0000	0.0001
0 1 2 3	4 5 6	7	8	9 1 Relative Con	0 centration	

4I ORGANICS INSTRUMENT BLANK

 Report No:
 220073108
 Instrument ID:
 QQQ2

 Analysis Date:
 08/04/2020 19:41
 Lab File ID:
 2200804A_10.d

 Analytical Method:
 EPA 537.1
 Analytical Batch:
 689424

ANALYTE	UNITS	RESULT	Q ·	DL	LOD	LOQ	#
NEtFOSAA	ng/L	6.00	U	2.09	6.00	10.0	
NMeFOSAA	ng/L	5.00	U	2.63	5.00	10.0	
Perfluorobutanesulfonic acid	ng/L	5.00	U	2.45	5.00	10.0	
Perfluorodecanoic acid	ng/L	5.00	U	2.21	5.00	10.0	
Perfluorododecanoic acid	ng/L	5.00	U	2.17	5.00	10.0	
Perfluoroheptanoic acid	ng/L	5.00	U	2.46	5.00	10.0	
Perfluorohexanesulfonic acid	ng/L	5.00	U	2.89	5.00	10.0	
Perfluorohexanoic acid	ng/L	5.00	U	2.27	5.00	10.0	
Perfluorononanoic acid	ng/L	5.00	U	3.14	5.00	10.0	
Perfluorooctanesulfonic acid	ng/L	5.00	U	3.85	5.00	10.0	
Perfluorooctanoic acid	ng/L	5.00	U	2.28	5.00	10.0	
Perfluorotetradecanoic acid	ng/L	5.00	U	3.16	5.00	10.0	
Perfluorotridecanoic acid	ng/L	5.00	U	2.56	5.00	10.0	
Perfluoroundecanoic acid	ng/L	5.00	U	2.52	5.00	10.0	

^{* -} Result greater than 1/2 LOQ

6I ORGANICS INITIAL CALIBRATION VERIFICATION

Report No:	220073108	Instrument ID:	QQQ2
Analysis Date:	08/04/2020 19:54	Lab File ID:	2200804A_11.d
Analytical Method:	EPA 537.1	Analytical Batch:	689424

ANALYTE	UNITS	TRUE	FOUND	% REC /	LCL	UCL	Q
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ng/L	50000	40300	81	70	130	
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ng/L	50000	41000	82	70	130	
Perfluorobutanesulfonic acid (PFBS)	ng/L	50200	50500	101	70	130	
Perfluorodecanoic acid (PFDA)	ng/L	50100	51800	103	70	130	
Perfluorododecanoic acid (PFDoA)	ng/L	50100	46600	93	70	130	
Perfluoroheptanoic acid (PFHpA)	ng/L	50100	49800	99	70	130	
Perfluorohexanoic acid (PFHxA)	ng/L	50300	48700	97	70	130	
Perfluorohexanesulfonic acid (PFHxS)	ng/L	50600	52600	104	70	130	
Perfluorononanoic acid (PFNA)	ng/L	50100	55400	111	70	130	
Perfluorooctanoic acid (PFOA)	ng/L	50200	50300	100	70	130	
Perfluorooctanesulfonic acid (PFOS)	ng/L	50300	45400	90	70	130	
Perfluorotetradecanoic acid (PFTeDA)	ng/L	50100	55300	110	70	130	
Perfluorotridecanoic acid (PFTrDA)	ng/L	50100	39800	80	70	130	
Perfluoroundecanoic acid (PFUdA)	ng/L	50100	45500	91	70	130	

7S ORGANICS INSTRUMENT SENSITIVITY CHECK

 Report No:
 220073108
 Instrument ID:
 QQQ2

 Analysis Date:
 08/04/2020 20:07
 Lab File ID:
 2200804A_12.d

 Analytical Method:
 EPA 537.1
 Analytical Batch:
 689424

ANALYTE	UNITS	TRUE	FOUND	% REC 🗸	LCL	UCL	Q	
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ng/L	10.0	8.08	80	50	150		
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ng/L	10.0	7.93	79	50	150		
Perfluorobutanesulfonic acid (PFBS)	ng/L	8.88	8.16	92	50	150	\Box	
Perfluorodecanoic acid (PFDA)	ng/L	10.0	8.24	82	50	150		
Perfluorododecanoic acid (PFDoA)	ng/L	10.0	8.48	85	50	150		
Perfluoroheptanoic acid (PFHpA)	ng/L	10.0	8.56	86	50	150		
Perfluorohexanoic acid (PFHxA)	ng/L	10.0	8.48	85	50	150		
Perfluorohexanesulfonic acid (PFHxS)	ng/L	9.12	8.24	90	50	150		
Perfluorononanoic acid (PFNA)	ng/L	10.0	9.12	91	50	150		
Perfluorooctanoic acid (PFOA)	ng/L	10.0	8.48	85	50	150		
Perfluorooctanesulfonic acid (PFOS)	ng/L	9.28	8.00	87	50	150		
Perfluorotetradecanoic acid (PFTeDA)	ng/L	10.0	8.16	81	50	150		
Perfluorotridecanoic acid (PFTrDA)	ng/L	10.0	7.75	77	50	150		
Perfluoroundecanoic acid (PFUdA)	ng/L	10.0	6.97	70	50	150		

7E ORGANICS CALIBRATION VERIFICATION

 Report No:
 220073108
 Instrument ID:
 QQQ2

 Analysis Date:
 08/05/2020 00:40
 Lab File ID:
 2200804A_32.d

 Analytical Method:
 EPA 537.1
 Analytical Batch:
 689424

ANALYTE	UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ng/L	50000	49100	98	70	130	
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ng/L	50000	49700	99	70	130	
Perfluorobutanesulfonic acid (PFBS)	ng/L	44300	42400	96	70	130	
Perfluorodecanoic acid (PFDA)	ng/L	50000	50400	101	70	130	
Perfluorododecanoic acid (PFDoA)	ng/L	50000	51400	103	70	130	
Perfluoroheptanoic acid (PFHpA)	ng/L	50000	49600	99	70	130	
Perfluorohexanoic acid (PFHxA)	ng/L	50000	50500	101	70	130	
Perfluorohexanesulfonic acid (PFHxS)	ng/L	45600	44100	97	70	130	
Perfluorononanoic acid (PFNA)	ng/L	50000	51600	103	70	130	
Perfluorooctanoic acid (PFOA)	ng/L	50000	49400	99	70	130	
Perfluorooctanesulfonic acid (PFOS)	ng/L	46300	44800	97	70	130	
Perfluorotetradecanoic acid (PFTeDA)	ng/L	50000	46500	93	70	130	
Perfluorotridecanoic acid (PFTrDA)	ng/L	50000	48700	97	70	130	
Perfluoroundecanoic acid (PFUdA)	ng/L	50000	45400	91	70	130	

7E ORGANICS CALIBRATION VERIFICATION

Report No:	220073108	Instrument ID:	QQQ2
Analysis Date:	08/05/2020 04:11	Lab File ID:	2200804A_48.d
Analytical Method:	EPA 537.1	Analytical Batch:	689424

UNITS	TRUE	FOUND	% REC	/ LCL	UCL	Q
ng/L	50000	49000	98	70	130	
ng/L	50000	48700	97	70	130	
ng/L	44300	40400	91	70	130	
ng/L	50000	48100	96	70	130	
ng/L	50000	47900	96	70	130	
ng/L	50000	52400	105	70	130	
ng/L	50000	48000	96	70	130	
ng/L	45600	43700	96	70	130	
ng/L	50000	53500	107	70	130	
ng/L	50000	51100	102	70	130	
ng/L	46300	46100	100	70	130	
ng/L	50000	45900	92	70	130	
ng/L	50000	46600	93	70	130	
ng/L	50000	42600	85	70	130	
	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	ng/L 50000 ng/L 45600 ng/L 50000	ng/L 50000 49000 ng/L 50000 48700 ng/L 50000 48100 ng/L 50000 47900 ng/L 50000 52400 ng/L 50000 48000 ng/L 50000 43700 ng/L 50000 53500 ng/L 50000 51100 ng/L 46300 46100 ng/L 50000 45900 ng/L 50000 46600	ng/L 50000 49000 98 ng/L 50000 48700 97 ng/L 50000 48100 96 ng/L 50000 47900 96 ng/L 50000 52400 105 ng/L 50000 48000 96 ng/L 45600 43700 96 ng/L 50000 53500 107 ng/L 50000 51100 102 ng/L 46300 46100 100 ng/L 50000 45900 92 ng/L 50000 46600 93	ng/L 50000 49000 98 70 ng/L 50000 48700 97 70 ng/L 44300 40400 91 70 ng/L 50000 48100 96 70 ng/L 50000 47900 96 70 ng/L 50000 52400 105 70 ng/L 50000 48000 96 70 ng/L 45600 43700 96 70 ng/L 50000 53500 107 70 ng/L 50000 51100 102 70 ng/L 46300 46100 100 70 ng/L 50000 45900 92 70 ng/L 50000 46600 93 70	ng/L 50000 49000 98 70 130 ng/L 50000 48700 97 70 130 ng/L 44300 40400 91 70 130 ng/L 50000 48100 96 70 130 ng/L 50000 47900 96 70 130 ng/L 50000 52400 105 70 130 ng/L 50000 48000 96 70 130 ng/L 45600 43700 96 70 130 ng/L 50000 53500 107 70 130 ng/L 50000 51100 102 70 130 ng/L 46300 46100 100 70 130 ng/L 50000 45900 92 70 130 ng/L 50000 46600 93 70 130

7S ORGANICS INSTRUMENT SENSITIVITY CHECK

 Report No:
 220073108
 Instrument ID:
 QQQ2

 Analysis Date:
 08/05/2020 07:02
 Lab File ID:
 2200804A_61.d

 Analytical Method:
 EPA 537.1
 Analytical Batch:
 689424

ANALYTE	UNITS	TRUE	FOUND	% REC ∨	LCL	UCL	Q
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ng/L	10.0	7.72	77	50	150	
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ng/L	10.0	7.27	73	50	150	
Perfluorobutanesulfonic acid (PFBS)	ng/L	8.88	7.64	86	50	150	
Perfluorodecanoic acid (PFDA)	ng/L	10.0	8.32	83	50	150	
Perfluorododecanoic acid (PFDoA)	ng/L	10.0	7.85	79	50	150	
Perfluoroheptanoic acid (PFHpA)	ng/L	10.0	8.64	87	50	150	
Perfluorohexanoic acid (PFHxA)	ng/L	10.0	7.81	78	50	150	
Perfluorohexanesulfonic acid (PFHxS)	ng/L	9.12	7.20	79	50	150	
Perfluorononanoic acid (PFNA)	ng/L	10.0	8.88	89	50	150	
Perfluorooctanoic acid (PFOA)	ng/L	10.0	7.90	79	50	150	
Perfluorooctanesulfonic acid (PFOS)	ng/L	9.28	8.00	87	50	150	
Perfluorotetradecanoic acid (PFTeDA)	ng/L	10.0	6.40	64	50	150	
Perfluorotridecanoic acid (PFTrDA)	ng/L	10.0	7.07	71	50	150	
Perfluoroundecanoic acid (PFUdA)	ng/L	10.0	6.58	66	50	150	

8F INTERNAL STANDARD AREA SUMMARY

Report No:	220073108	Standard ID:	1205 (ICAL Midpoint)
Analyst:	ВМН	Instrument ID:	QQQ2
Analysis Date:	08/04/20 18:35	Lab File ID:	2200804A_06.d
Analytical Method:	EPA 537 Rev. 1.1	Analytical Batch:	689424

		M2PFOA		M2PFHx	4	M2PFDA		M4PFO	3
		Area		Area		Area		Area	
STANDARD		79842		243914		73847		8737,1	
				/					
CLIENT SAMPLE ID	GCAL SAMP ID		#	/	#	✓	#	/	#
MB2067457	2067457	93974		267077		84971		95127	
LCS2067458	2067458	89905		260257		86215		91034	\top
LCSD2067459	2067459	88475		254047		80277	Г	90810	
GL-POTABLE-12	22007310801	81172		230564		75091		82716	
GL-POTABLE-12-DUP	22007310802	83235		239594		78785		85052	
GL-POTABLE-12-MS	22007310803	81723		242380		72048		83542	
GL-POTABLE-12-MSD	22007310804	81687		246717		79390		86282	
GL-POTABLE-20	22007310805	86476		239289		73408		84317	
GL-POTABLE-24	22007310806	80435		244946		75952		83392	
GL-POTABLE-23	22007310807	86098		236221		75100		84183	
GL-POTABLE-22	22007310808	84184		239245		73963		80851	\Box
GL-POTABLE-13	22007310809	84539		236517		76255		83187	\Box
GL-FB-072820	22007310810	90944		258807		80776		91475	\Box
GL-POTABLE-16	22007310811	80369		239985		76936		82259	\Box
GL-POTABLE-18	22007310812	82921		250097		74298		81141	\Box

AREA UPPER LIMIT = +50% of internal standard area AREA LOWER LIMIT = -50% of internal standard area

Column used to flag values outside QC limits

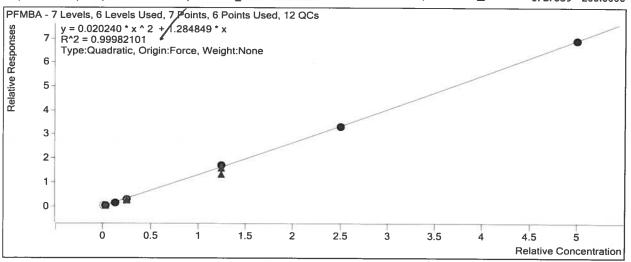
* Value outside QC limits

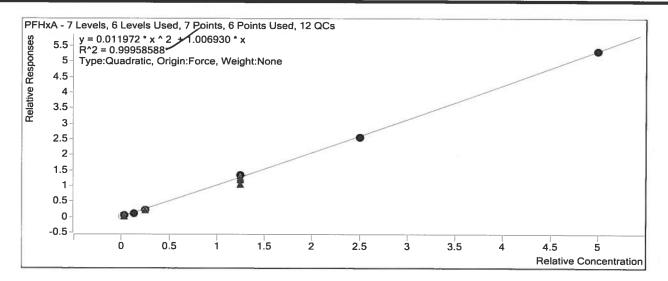
QQQ2 Run Log

										Comment	BMH,QQQ2;MeOH SHOT/INSTRUMENT IDLE	BMH,QQQ2;Cal	MRA, QQQ2; MeOH SHOT/INSTRUMENT IDLE	ВМН, QQQ2;1В	ВМН, QQQ2;ICV	BMH,QQQ2;ISC	MRA,QQQ2;MeOH SHOT/INSTRUMENT IDLE	BMH,QQQ2;689517												
										Acq. Date-Time	8/6/2020 18:19	8/6/2020 18:32	8/6/2020 18:45	8/6/2020 18:58	8/6/2020 19:11	8/6/2020 19:25	8/6/2020 19:38	8/6/2020 19:51	8/6/2020 20:19	8/6/2020 20:32	8/6/2020 20:45	8/6/2020 20:58	8/6/2020 21:15	8/6/2020 21:28	8/6/2020 21:41	8/6/2020 21:54	8/6/2020 22:08	8/6/2020 22:21	8/6/2020 22:34	8/6/2020 22:47
Expiration:				8/8/2020	3/31/2025	1/30/2021	1/25/2021	2/4/2020	2/5/2021	Type	MeOH Shot	Cal	MeOH Shot	Sample	oc	တွ	MeOH Shot	Sample	တွ	σς	Sample	Sample	Sample	Sample						
ВМН	9992	2200806A	2200806ACAL/2200806ACALDW	012-43-5	2129224	012-40-2	012-38-3	012-42-2	012-42-8	Data File	2200806A_01.d	2200806A_02.d	2200806A_03.d	2200806A_04.d	2200806A_05.d	2200806A_06.d	2200806A_07.d	2200806A_08.d	2200806A_09.d	2200806A_10.d	2200806A_11.d	2200806A_12.d	2200806A_13.d	2200806A_14.d	2200806A_15.d	2200806A_16.d	2200806A_17.d	2200806A_18.d	2200806A_19.d	2200806A_20.d
Analyst:	Instrument:	Batch:	Current ICAL Bath:	20mM Amm Acetate	Methanol	Calibration Std	ICV Std	EIS Mix	IIS Mix	Name	MeOH Shot	1201	1202	1203	1204	1205	1206	1207	MeOH Shot	1500	1600	1450	MeOH Shot	2069645	2069646	2069647	22008061501 x5	22008061511 x5	22008061502	22008061503

ਜ ਜ ਜ	ਜਿਜਜ	ਜ ਜ ਜ	1 10		പ പ	ਜ ਜ		·		↔ -	→ ←	1	← ←	٠ ٦	Н	Т	1	1
BMH,QQQ2;689517 BMH,QQQ2;689517 BMH,QQQ2;689517	BMH,QQQ2;689517 BMH,QQQ2;689517 BMH,QQQ2;689517	BMH,QQQ2;CCV BMH,QQQ2;689517 BMH,QQQ2;689517	BMH,QQQ2;689517 BMH,QQQ2;689517 BMH,QQQ2;689517	BMH,QQQ2;689517 BMH,QQQ2;CCV	BMH,QQQ2;689286 BMH,QQQ2;689286	BMH,QQQ2;689286 BMH,QQQ2;689286	BMH,QQQ2;689286	BMH,QQQ2;689286	BMH,QQQ2;689286 BMH,QQQ2;689286	BMH,QQQ2;689294	BMH,QQQ2;689294	ВМН, QQQ2;689294	BMH,QQQ2;CCV BMH.OOO2:689359	BMH,QQQ2;689359	BMH,QQQ2;689359	BMH,QQQ2;689285	BMH,QQQ2;689285	BMH,QQQ2;689285
8/6/2020 23:00 8/6/2020 23:14 8/6/2020 23:27	8/6/2020 23:40 8/6/2020 23:53 8/7/2020 0:06	8/7/2020 0:19 8/7/2020 0:33 8/7/2020 0:46	8/7/2020 0:59 8/7/2020 1:12 8/7/2020 1:25	8/7/2020 1:39 8/7/2020 1:52	8/7/2020 2:05 8/7/2020 2:18	8/7/2020 2:31 8/7/2020 2:44	8/7/2020 2:58	8/7/2020 3:24	8/7/2020 3:37 8/7/2020 3:50	8/7/2020 4:03	8/7/2020 4:30	8/7/2020 4:43	8/7/2020 5:09	8/7/2020 5:22	8/7/2020 5:36	8/7/2020 5:49	8/7/2020 6:02	8/7/2020 6:15
Sample Sample Sample	Sample Sample Sample	QC Sample Sample	Sample Sample Sample	Sample	Sample	QC Sample	Sample	Sample	Sample	QC	Sample	Sample	رات Sample	Sample	Sample	Sample	σς	σς
2200806A_21.d 2200806A_22.d 2200806A_23.d	2200806A_24.d 2200806A_25.d 2200806A_26.d	2200806A_27.d 2200806A_28.d 2200806A_29.d	2200806A_30.d 2200806A_31.d 2200806A_32.d	2200806A_33.d 2200806A_34.d	2200806A_35.d 2200806A_36.d	2200806A_37.d 2200806A_38.d	2200806A_39.d 2200806A_40.d	2200806A_41.d	2200806A_42.d 2200806A_43.d	2200806A_44.d 2200806A_45.d	2200806A_46.d	2200806A_47.d	2200806A_46.d	2200806A_50.d	2200806A_51.d	2200806A_52.d	2200806A_53.d	2200806A_54.d
22008061504 22008061505 22008061506	22008061507 22008061508 22008061509	1400 22008061510 22008061513	22008061512 22008061511 x10 22008061501 x1	22008061511 x1 1400	2068384 2068384	2068385 22007317802	22007234701 22007235701	22007245102	22007251101	2068441 22007252201	22007252202	22007252401	22007286202	22008042003	22008042101	2068380	2068381	2068382

₩ .	⊣ ⊢	H	П	⊣		↔	1	1	₽		1	Н	Н	П	←	~	1	1	П	_	1	\vdash	\vdash	⊢	\vdash	₽	⊣	Н	₽	\vdash	⊣	Т
BMH, QQQ2; 689285	BIMIT, QQQ2;689285 BMH, QQQ2;689285	BMH,QQQ2;689285	BMH,QQQ2;689285	BMH,QQQ2;689285	BMH,QQQ2;689285	BMH,QQQ2;CCV	BMH,QQQ2;689285	ВМН, QQQ2; ССV	BMH,QQQ2;689285	BMH,QQQ2;689285	BMH,QQQ2;689285	BMH,QQQ2;689453	BMH,QQQ2;MeOH SHOT/INSTRUMENT IDLE	BMH,QQQ2;689453	BMH,QQQ2;CCV	BMH,QQQ2;689453																
8/7/2020 6:28	8/7/2020 6:55	8/7/2020 7:08	8/7/2020 7:21	8/7/2020 7:34	8/7/2020 7:47	8/7/2020 8:00	8/7/2020 8:14	8/7/2020 8:27	8/7/2020 8:40	8/7/2020 8:53	8/7/2020 9:06	8/7/2020 9:20	8/7/2020 9:33	8/7/2020 9:46	8/7/2020 9:59	8/7/2020 10:12	8/7/2020 10:25	8/7/2020 10:39	8/7/2020 10:52	8/7/2020 11:05	8/7/2020 11:18	8/7/2020 11:31	8/7/2020 11:44	8/7/2020 11:58	8/7/2020 12:11	8/7/2020 12:24	8/7/2020 12:37	8/7/2020 12:50	8/7/2020 13:42	8/7/2020 13:55	8/7/2020 14:08	8/7/2020 14:21
Sample	Sample	Sample	Sample	Sample	Sample	QC	Sample	σς	Sample	Sample	Sample	Sample	ОС	σc	Sample	σc	Sample	Sample	Sample	MeOH Shot	Sample	σc	Sample									
2200806A_55.d	2200806A_57.d	2200806A_58.d	2200806A_59.d	2200806A_60.d	2200806A_61.d	2200806A_62.d	2200806A_63.d	2200806A_64.d	2200806A_65.d	2200806A_66.d	2200806A_67.d	2200806A_68.d	2200806A_69.d	2200806A_70.d	2200806A_71.d	2200806A_72.d	2200806A_73.d	2200806A_74.d	2200806A_75.d	2200806A_76.d	2200806A_77.d	2200806A_78.d	2200806A_79.d	2200806A_80.d	2200806A_81.d	2200806A_82.d	2200806A_83.d	2200806A_84.d	2200806A_85.d	2200806A_86.d	2200806A_87.d	2200806A_88.d
22007310813	22007310815	22007310816	22007310817	22007310818	22007310819	1450	22007310820	22007304801	22007304802	22007310101	22007310102	22007310201	22007310202	22007310301	22007310401	22007310402	1400	22007310403	22007314001	22007317801	2069274	2069275	2069276	22008042601	2069277	22008042602	22008051606	22008051607	MeOH Shot	22008051608	1400	2069274

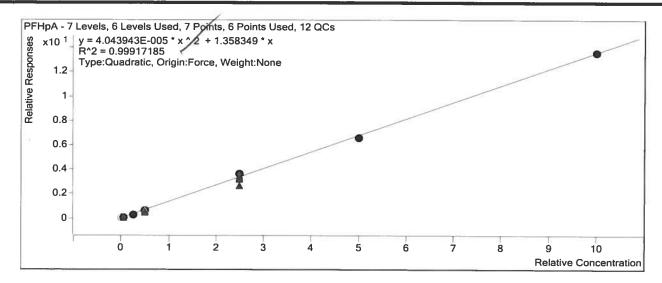

T	Н	1	1	1	Ţ	П	1	7
BMH,QQQ2;689453	BMH,QQQ2;689453	BMH,QQQ2;MeOH SHOT/INSTRUMENT IDLE	BMH,QQQ2;689453	BMH,QQQ2;689453	BMH,QQQ2;689453	ВМН, QQQ2;ССV	BMH,QQQ2;MeOH SHOT/INSTRUMENT IDLE	BMH,QQQ2;MeOH SHOT/INSTRUMENT IDLE
8/7/2020 14:35	8/7/2020 14:48	8/7/2020 15:01	8/7/2020 15:14	8/7/2020 15:27	8/7/2020 15:41	8/7/2020 15:54	8/7/2020 16:07	MeOH Shot 8/7/2020 16:20
ОС	σc	MeOH Shot	Sample	Sample	Sample	αc	MeOH Shot	MeOH Shot
2200806A_89.d	2200806A_90.d	2200806A_91.d	2200806A_92.d	2200806A_93.d	2200806A_94.d	2200806A_95.d	2200806A_96.d	2200806A_97.d
2069275	2069276	MeOH Shot	22008042602	22008051606	22008051607	1400	MeOH Shot	MeOH Shot


Calibration STD	Cai Type		Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200806ACALDW\2200806A_08.d	Calibration		7	Ø	769357	177.0000	0.6981
PFBS - 7 Levels, 6 Levels Used, 7 Points, 6 Points Used 3 .25	, 12 QCs						
0 0.5 1 1.5	5 2	2.5	3	3.5	4 Relative Cor	4.5	

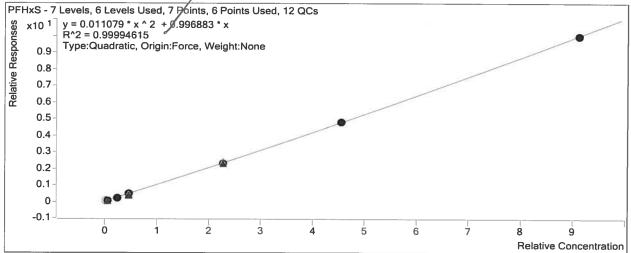
Target Compound

PFMBA

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200806ACALDW\2200806A_02.d	Calibration	1		2960	0.5000	1.0705
D:\MassHunter\Data\2200806ACALDW\2200806A_03.d	Calibration	2	☑	10098	1.2500	1.1526
D:\MassHunter\Data\2200806ACALDW\2200806A_04.d	Calibration	3	☑	40294	5.0000	1.1169
D:\MassHunter\Data\2200806ACALDW\2200806A_05.d	Calibration	4	✓	83688	10.0000	1.1616
D:\MassHunter\Data\2200806ACALDW\2200806A_06.d	Calibration	5		442458	50.0000	1.3583
D:\MassHunter\Data\2200806ACALDW\2200806A_07.d	Calibration	6		891184	100.0000	1.3207
D:\MassHunter\Data\2200806ACALDW\2200806A_08.d	Calibration	7	Ø	1727339	200.0000	1.3872



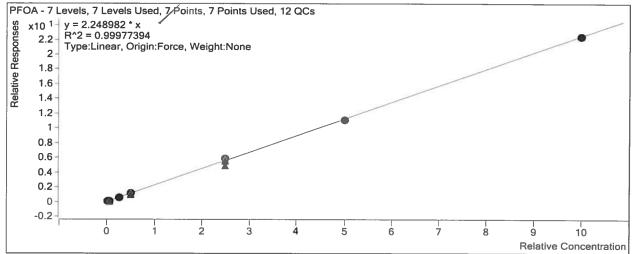
Target Compound


LPFPeS

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200806ACALDW\2200806A_02.d	Calibration	1		1406	0.4700	0.7526
$\hbox{D:$\MassHunter\Data\2200806ACALDW$\2200806A_03.d}$	Calibration	2	☑	5056	1.1800	0.8152
D:\MassHunter\Data\2200806ACALDW\2200806A_04.d	Calibration	3	\square	21022	4.7000	0.8800
D:\MassHunter\Data\2200806ACALDW\2200806A_05.d	Calibration	4	☑	43636	9.4000	0.8997
D:\MassHunter\Data\2200806ACALDW\2200806A_06.d	Calibration	5		219893	47.0000	0.9263

PFHxS

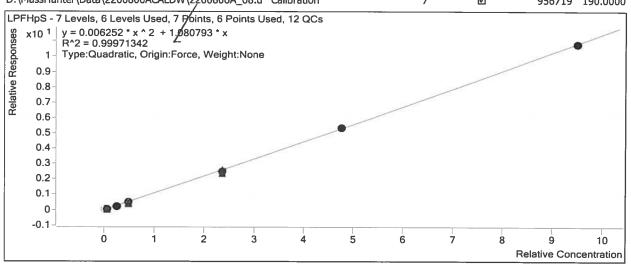
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200806ACALDW\2200806A_02.d	Calibration	1		1675	0.4560	0.9243
D:\MassHunter\Data\2200806ACALDW\2200806A_03.d	Calibration	2	☑	5231	1.1400	0.8731
D:\MassHunter\Data\2200806ACALDW\2200806A_04.d	Calibration	3	☑	21063	4.5600	0.9088
D:\MassHunter\Data\2200806ACALDW\2200806A_05.d	Calibration	4	☑	44859	9.1200	0.9533
D:\MassHunter\Data\2200806ACALDW\2200806A_06.d	Calibration	5	☑	231263	45.6000	1.0041
D:\MassHunter\Data\2200806ACALDW\2200806A_07.d	Calibration	6	☑	457108	91.2000	1.0556
D:\MassHunter\Data\2200806ACALDW\2200806A_08.d	Calibration	7	☑	885206	182.4000	1.0972

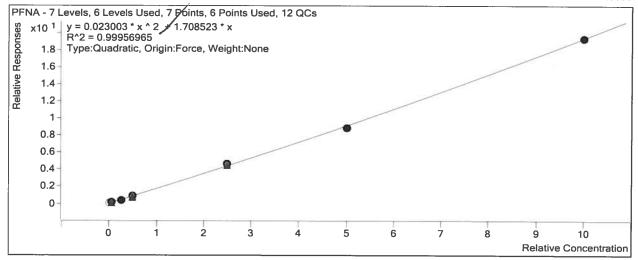


Target Compound

ADONA

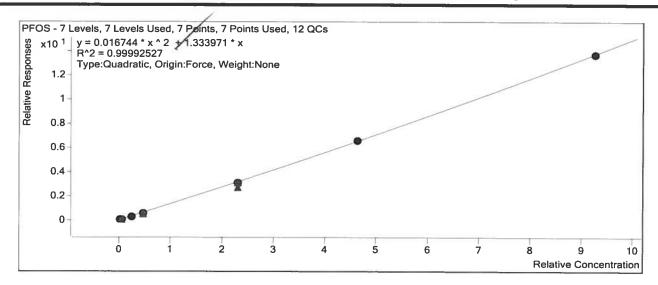
						Exp Conc	
Calibr	ation STD	Cal Type	Level	Enabled	Response	•	RF
D:\Mas	sHunter\Data\2200806ACALDW\2200806A_02.d	Calibration	1		7851	0.5000	4.1975
D:\Mas	sHunter\Data\2200806ACALDW\2200806A_03.d	Calibration	2	\square	29920	1.2500	4.7897
D:\Mas	sHunter\Data\2200806ACALDW\2200806A_04.d	Calibration	3	\square	130878	5.0000	5.0452
D:\Mas	sHunter\Data\2200806ACALDW\2200806A_05.d	Calibration	4	\square	261982	10.0000	5.4796
D:\Mas	sHunter\Data\2200806ACALDW\2200806A_06.d	Calibration	5	\square	1310070	50.0000	6.0596
D:\Mas	sHunter\Data\2200806ACALDW\2200806A_07.d	Calibration	6	\square	2616099	100.0000	5.6379
D:\Mas	sHunter\Data\2200806ACALDW\2200806A_08.d	Calibration	7	☑	4999022	200.0000	5.7464

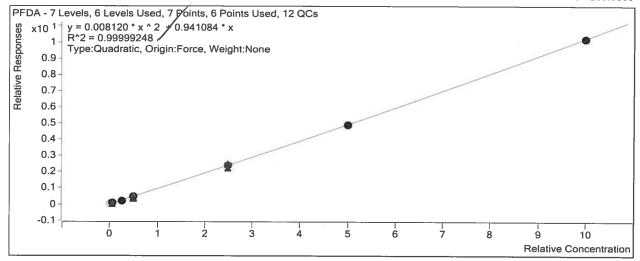

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200806ACALDW\2200806A_07.d	Calibration	6	☑	1031146	100.0000	2.2222
D:\MassHunter\Data\2200806ACALDW\2200806A_08.d	Calibration	7	Ø	1956635	200.0000	2.2492


Target Compound

LPFHpS

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200806ACALDW\2200806A_02.d	Calibration	1		1507	0.4750	0.7986
D:\MassHunter\Data\2200806ACALDW\2200806A_03.d	Calibration	2	☑	5789	1.1900	0.9257
D:\MassHunter\Data\2200806ACALDW\2200806A_04.d	Calibration	3	☑	23541	4.7500	0.9750
D:\MassHunter\Data\2200806ACALDW\2200806A_05.d	Calibration	4	V	48692	9.5000	0.9934
D:\MassHunter\Data\2200806ACALDW\2200806A_06.d	Calibration	5		251220	47.5000	1.0471
D:\MassHunter\Data\2200806ACALDW\2200806A_07.d	Calibration	6	☑	510166	95.0000	1.1310
D:\MassHunter\Data\2200806ACALDW\2200806A_08.d	Calibration	7	\square	956719	190.0000	1.1384

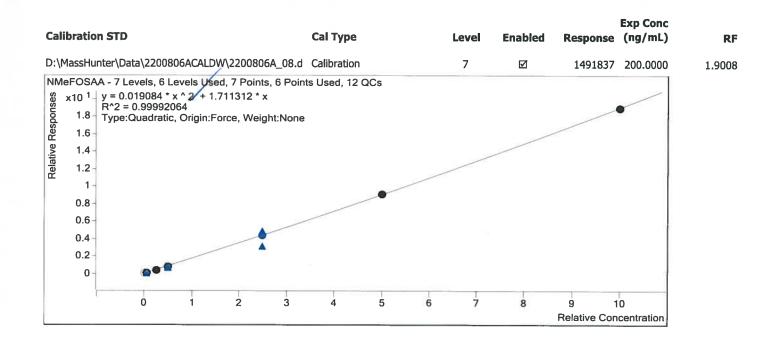

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200806ACALDW\2200806A_04.d	Calibration	3	Ø	39720	5.0000	1.5311
$D:\\ \label{lem:decomposition} D:\\ $	Calibration	4	Ø	80621	10.0000	1.6863
D:\MassHunter\Data\2200806ACALDW\2200806A_06.d	Calibration	5	Ø	405903	50.0000	1.8775
$\label{lem:decomposition} D:\mbox{\sc MassHunter}\mbox{\sc Data}\mbox{\sc 2200806ACALDW}\mbox{\sc 2200806A_07.d}$	Calibration	6	Ø	827467	100.0000	1.7833
D:\MassHunter\Data\2200806ACALDW\2200806A_08.d	Calibration	7	\square	1689284	200.0000	1.9419


Target Compound

PFOS

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200806ACALDW\2200806A_02.d	Calibration	1	☑	2071	0.4628	1.1266
D:\MassHunter\Data\2200806ACALDW\2200806A_03.d	Calibration	2	☑	7211	1.1600	1.1828
D:\MassHunter\Data\2200806ACALDW\2200806A_04.d	Calibration	3		27578	4.6280	1.1723
D:\MassHunter\Data\2200806ACALDW\2200806A_05.d	Calibration	4	Ø	61310	9.2550	1.2840
D:\MassHunter\Data\2200806ACALDW\2200806A_06.d	Calibration	5	\square	313506	46.2800	1.3412
D:\MassHunter\Data\2200806ACALDW\2200806A_07.d	Calibration	6	✓	626327	92.5500	1.4252
D:\MassHunter\Data\2200806ACALDW\2200806A_08.d	Calibration	7	\square	1218045	185.1000	1.4877

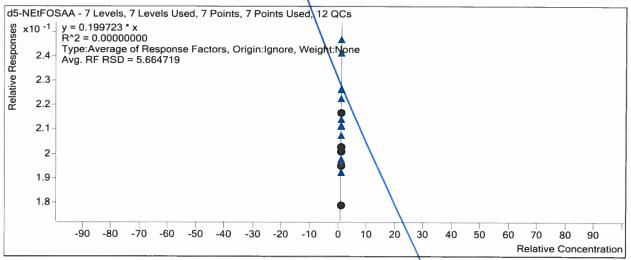
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200806ACALDW\2200806A_06.d	Calibration	5		208114	50.0000	0.9608
D:\MassHunter\Data\2200806ACALDW\2200806A_07.d	Calibration	6		421908	100.0000	0.9829
D:\MassHunter\Data\2200806ACALDW\2200806A_08.d	Calibration	7		802216	200.0000	1.0221

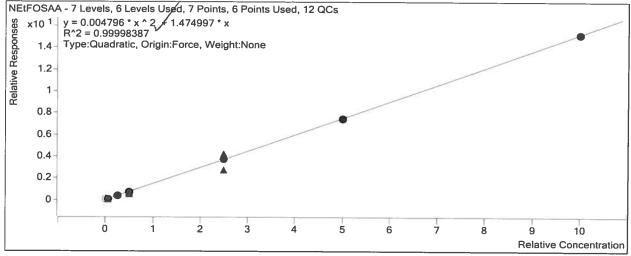


Extracted ISTD

M2PFDA

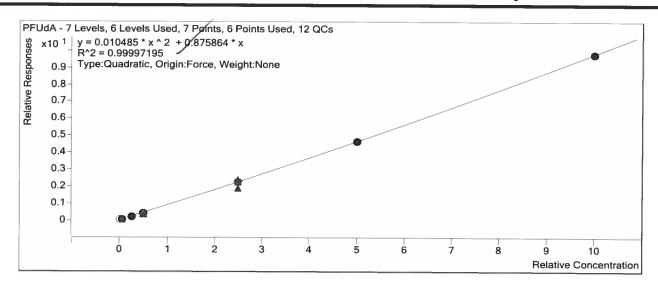
Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
$D:\\ \label{lem:decomposition} D:\\ $	Calibration	1	☑	68195	20.0000	3409.7419
$D:\\ \label{lem:decomposition} D:\\ $	Calibration	2	☑	91834	20.0000	4591.7136
D:\MassHunter\Data\2200806ACALDW\2200806A_04.d	Calibration	3		95227	20.0000	4761.3423
D:\MassHunter\Data\2200806ACALDW\2200806A_05.d	Calibration	4	\square	92978	20.0000	4648.9237
D:\MassHunter\Data\2200806ACALDW\2200806A_06.d	Calibration	5	☑	86646	20.0000	4332.2871
D:\MassHunter\Data\2200806ACALDW\2200806A_07.d	Calibration	6	\square	85854	20.0000	4292.6771
D:\MassHunter\Data\2200806ACALDW\2200806A_08.d	Calibration	7	\square	78483	20.0000	3924.1661
Target Compound	<i>LPFNS</i>					

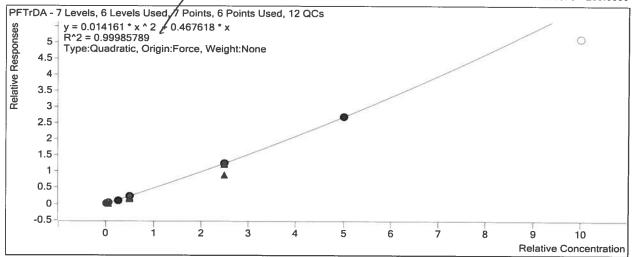

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200806ACALDW\2200806A_02.d	Calibration	1		1730	0.4800	0.9073
D:\MassHunter\Data\2200806ACALDW\2200806A_03.d	Calibration	2	☑	5830	1.2000	0.9244
D:\MassHunter\Data\2200806ACALDW\2200806A_04.d	Calibration	3		23150	4.8000	0.9488
D:\MassHunter\Data\2200806ACALDW\2200806A_05.d	Calibration	4	\square	50521	9.6000	1.0200
D:\MassHunter\Data\2200806ACALDW\2200806A_06.d	Calibration	5		252819	48.0000	1.0428


Instrument ISTD

d5-NEtFOSAA

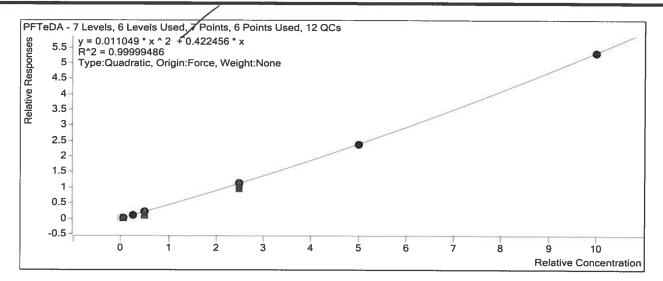
Calibration STD		Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\22008	06ACALDW\2200806A_02.d	Calibration	1		14788	20.0000	0.2168
D:\MassHunter\Data\22008	06ACALDW\2200806A_03\d	Calibration	2	☑	18605	20.0000	0.2026
D:\MassHunter\Data\22008	06ACALDW\2200806A_04.d	Calibration	3	☑	19150	20.0000	0.2011
D:\MassHunter\Data\22008	06ACALDW\2200806A_05.d	Calibration	4	Ø	16639	20.0000	0.1790
D:\MassHunter\Data\22008	06ACALDW\2200806A_06.d	Calibration	5	☑	17400	20.0000	0.2008
D:\MassHunter\Data\22008	06ACALDW\2200806A_07.d	Calibration	6	☑	17411	20.0000	0.2028
D:\MassHunter\Data\22008	06ACALDW\2200806A_08.d	Calibration	7	☑	15299	20.0000	0.1949
d5-NEtFOSAA - 7 Levels, 7	Levels Used, 7 Points, 7 Po	ints Used, 12 QCs					
\$\text{\$\text{x}\$10 \cdot -1 \\ \text{\$\text{y}} = 0.199723 \cdot \text{\$\text{\$\text{\$\text{R}^2\$} = 0.000000} \\ \text{\$\text{Type:Average of Avg. RF RSD} = \text{\$\}\$\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$	000 of Response Factors, Origin:I	gnore, Weight:None					


Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200806ACALDW\2200806A_05.d	Calibration	4	Ø	66701	10.0000	1.4348
D:\MassHunter\Data\2200806ACALDW\2200806A_06.d	Calibration	5	☑	325232	50.0000	1.5014
D:\MassHunter\Data\2200806ACALDW\2200806A_07.d	Calibration	6	\square	641666	100.0000	1.4948
D:\MassHunter\Data\2200806ACALDW\2200806A_08.d	Calibration	7	\square	1195504	200.0000	1.5233


Target Compound

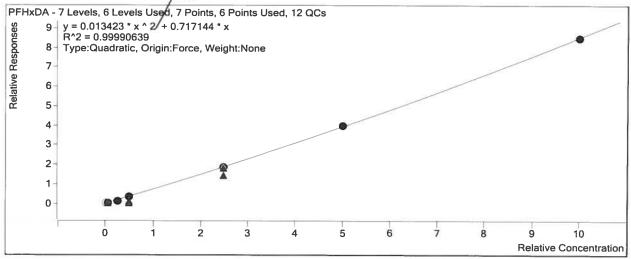
PFUdA

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200806ACALDW\2200806A_02.d	Calibration	1		1567	0.5000	0.9191
D:\MassHunter\Data\2200806ACALDW\2200806A_03.d	Calibration	2	☑	4285	1.2500	0.7465
D:\MassHunter\Data\2200806ACALDW\2200806A_04.d	Calibration	3	Ø	19629	5.0000	0.8245
D:\MassHunter\Data\2200806ACALDW\2200806A_05.d	Calibration	4	7	37504	10.0000	0.8067
D:\MassHunter\Data\2200806ACALDW\2200806A_06.d	Calibration	5		194458	50.0000	0.8977
D:\MassHunter\Data\2200806ACALDW\2200806A_07.d	Calibration	6	7	399922	100.0000	0.9316
D:\MassHunter\Data\2200806ACALDW\2200806A_08.d	Calibration	7	☑	769427	200.0000	0.9804


					Exp Conc	
Calibration STD	Cal Type	Level	Enabled	Response	(ng/mL)	RF
D:\MassHunter\Data\2200806ACALDW\2200806A_05.d	Calibration	4	☑	21200	10.0000	0.4560
D:\MassHunter\Data\2200806ACALDW\2200806A_06.d	Calibration	5	☑	109672	50.0000	0.5063
D:\MassHunter\Data\2200806ACALDW\2200806A_07.d	Calibration	6	Ø	230966	100.0000	0.5380
D:\MassHunter\Data\2200806ACALDW2200806A_08.d	Calibration	7		402670	200.0000	0.5131

Target Compound

NEtFOSA


Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200806ACALDW\2200806A_02.d	Calibration	1		54	0.5000	0.0317
D:\MassHunter\Data\2200806ACALDW\2200806A_03.d	Calibration	2	Ø	55	1.2500	0.0095
D:\MassHunter\Data\2200806ACALDW\2200806A_04.d	Calibration	3		36	5.0000	0.0015
D:\MassHunter\Data\2200806ACALDW\2200806A_05.d	Calibration	4	Ø	60	10.0000	0.0013
D:\MassHunter\Data\2200806ACALDW\2200806A_06.d	Calibration	5	\square	57	50.0000	0.0003
D:\MassHunter\Data\2200806ACALDW\2200806A_07.d	Calibration	6		133	100.0000	0.0003
D:\MassHunter\Data\2200806ACALDW\2200806A_08.d	Calibration	7	\square	127	200.0000	0.0002

Target Compound

PFHxDA

Calibration STD	Cal Type	Level	Enabled	Response	Exp Conc (ng/mL)	RF
D:\MassHunter\Data\2200806ACALDW\2200806A_02.d	Calibration	1		1223	0.5000	0.7173
D:\MassHunter\Data\2200806ACALDW\2200806A_03.d	Calibration	2	Ø	4163	1.2500	0.7253
D:\MassHunter\Data\2200806ACALDW\2200806A_04.d	Calibration	3	☑	12845	5.0000	0.5395
D:\MassHunter\Data\2200806ACALDW\2200806A_05.d	Calibration	4	☑	31399	10.0000	0.6754
D:\MassHunter\Data\2200806ACALDW\2200806A_06.d	Calibration	5	☑	159581	50.0000	0.7367
D:\MassHunter\Data\2200806ACALDW\2200806A_07.d	Calibration	6	☑	339682	100.0000	0.7913
D:\MassHunter\Data\2200806ACALDW\2200806A_08.d	Calibration	7	Ø	667671	200.0000	0.8507

Target Compound

PFODA

Calibration STD

Cal Type

Level

Enabled

Exp Conc Response (ng/mL)

RF

4I ORGANICS INSTRUMENT BLANK

Report No:	220073108	Instrument ID:	QQQ2
Analysis Date:	08/06/2020 20:32	Lab File ID:	2200806A_10.d
Analytical Method:	EPA 537.1	Analytical Batch:	689642

ANALYTE	UNITS	RESULT	Q V	DL	LOD	LOQ	#
NEtFOSAA	ng/L	6.00	U	2.09	6.00	10.0	
NMeFOSAA	ng/L	5.00	U	2.63	5.00	10.0	
Perfluorobutanesulfonic acid	ng/L	5.00	U	2.45	5.00	10.0	
Perfluorodecanoic acid	ng/L	5.00	U	2.21	5.00	10.0	
Perfluorododecanoic acid	ng/L	5.00	U	2.17	5.00	10.0	
Perfluoroheptanoic acid	ng/L	5.00	U	2.46	5.00	10.0	
Perfluorohexanesulfonic acid	ng/L	5.00	U	2.89	5.00	10.0	1
Perfluorohexanoic acid	ng/L	5.00	U	2.27	5.00	10.0	
Perfluorononanoic acid	ng/L	5.00	υ	3.14	5.00	10.0	
Perfluorooctanesulfonic acid	ng/L	5.00	U	3.85	5.00	10.0	
Perfluorooctanoic acid	ng/L	5.00	U	2.28	5.00	10.0	
Perfluorotetradecanoic acid	ng/L	5.00	U	3.16	5.00	10.0	
Perfluorotridecanoic acid	ng/L	5.00	U	2.56	5.00	10.0	
Perfluoroundecanoic acid	ng/L	5.00	U	2.52	5.00	10.0	

^{* -} Result greater than 1/2 LOQ

6I ORGANICS INITIAL CALIBRATION VERIFICATION

 Report No:
 220073108
 Instrument ID:
 QQQ2

 Analysis Date:
 08/06/2020 20:45
 Lab File ID:
 2200806A_11.d

 Analytical Method:
 EPA 537.1
 Analytical Batch:
 689642

ANALYTE	UNITS	TRUE	FOUND	% REC	LCL	UCL	Q
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ng/L	50000	37000	74	70	130	
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ng/L	50000	36200	72	70	130	
Perfluorobutanesulfonic acid (PFBS)	ng/L	50200	41800	83	70	130	
Perfluorodecanoic acid (PFDA)	ng/L	50100	47000	94	70	130	\Box
Perfluorododecanoic acid (PFDoA)	ng/L	50100	41500	83	70	130	
Perfluoroheptanoic acid (PFHpA)	ng/L	50100	40100	80	70	130	
Perfluorohexanoic acid (PFHxA)	ng/L	50300	41800	83	70	130	
Perfluorohexanesulfonic acid (PFHxS)	ng/L	50600	46800	93	70	130	
Perfluorononanoic acid (PFNA)	ng/L	50100	50300	100	70	130	
Perfluorooctanoic acid (PFOA)	ng/L	50200	43800	87	70	130	
Perfluorooctanesulfonic acid (PFOS)	ng/L	50300	39800	79	70	130	
Perfluorotetradecanoic acid (PFTeDA)	ng/L	50100	43300	87	70	130	
Perfluorotridecanoic acid (PFTrDA)	ng/L	50100	36300	72	70	130	
Perfluoroundecanoic acid (PFUdA)	ng/L	50100	42400	85	70	130	

7S ORGANICS INSTRUMENT SENSITIVITY CHECK

Report No:	220073108	Instrument ID:	QQQ2
Analysis Date:	08/06/2020 20:58	Lab File ID:	2200806A_12.d
Analytical Method:	EPA 537.1	Analytical Batch:	689642

ANALYTE	UNITS	TRUE	FOUND	% REC /	LCL	UCL	Q
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ng/L	10.0	8.96	90	50	150	
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ng/L	10.0	7.96	80	50	150	
Perfluorobutanesulfonic acid (PFBS)	ng/L	8.88	7.22	82	50	150	
Perfluorodecanoic acid (PFDA)	ng/L	10.0	8.48	85	50	150	
Perfluorododecanoic acid (PFDoA)	ng/L	10.0	8.08	81	50	150	
Perfluoroheptanoic acid (PFHpA)	ng/L	10.0	7.84	78	50	150	
Perfluorohexanoic acid (PFHxA)	ng/L	10.0	8.32	83	50	150	
Perfluorohexanesulfonic acid (PFHxS)	ng/L	9.12	8.56	94	50	150	
Perfluorononanoic acid (PFNA)	ng/L	10.0	8.72	87	50	150	
Perfluorooctanoic acid (PFOA)	ng/L	10.0	8.48	85	50	150	
Perfluorooctanesulfonic acid (PFOS)	ng/L	9.28	7.91	86	50	150	
Perfluorotetradecanoic acid (PFTeDA)	ng/L	10.0	10.0	100	50	150	
Perfluorotridecanoic acid (PFTrDA)	ng/L	10.0	7.94	79	50	150	
Perfluoroundecanoic acid (PFUdA)	ng/L	10.0	8.48	85	50	150	

7E ORGANICS CALIBRATION VERIFICATION

Report No:	220073108	Instrument ID:	QQQ2
Analysis Date:	08/07/2020 01:52	Lab File ID:	2200806A_34.d
Analytical Method:	EPA 537.1	Analytical Batch:	689642

ANALYTE	UNITS	TRUE	FOUND	% REC /	LCL	UCL	Q
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ng/L	50000	52800	106	70	130	
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ng/L	50000	51000	102	70	130	
Perfluorobutanesulfonic acid (PFBS)	ng/L	44300	42600	96	70	130	
Perfluorodecanoic acid (PFDA)	ng/L	50000	52200	104	70	130	
Perfluorododecanoic acid (PFDoA)	ng/L	50000	51200	102	70	130	
Perfluoroheptanoic acid (PFHpA)	ng/L	50000	48900	98	70	130	
Perfluorohexanoic acid (PFHxA)	ng/L	50000	50200	100	70	130	
Perfluorohexanesulfonic acid (PFHxS)	ng/L	45600	45600	100	70	130	
Perfluorononanoic acid (PFNA)	ng/L	50000	53300	107	70	130	
Perfluorooctanoic acid (PFOA)	ng/L	50000	51300	103	70	130	
Perfluorooctanesulfonic acid (PFOS)	ng/L	46300	46200	100	70	130	
Perfluorotetradecanoic acid (PFTeDA)	ng/L	50000	49900	100	70	130	
Perfluorotridecanoic acid (PFTrDA)	ng/L	50000	49500	99	70	130	
Perfluoroundecanoic acid (PFUdA)	ng/L	50000	50400	101	70	130	

7E ORGANICS CALIBRATION VERIFICATION

Report No:	220073108	Instrument ID:	QQQ2
Analysis Date:	08/07/2020 04:56	Lab File ID:	2200806A_48.d
Analytical Method:	EPA 537.1	Analytical Batch:	689642

					/		
ANALYTE	UNITS	TRUE	FOUND	% REC /	LCL	UCL	Q
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ng/L	50000	55400	111	70	130	
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ng/L	50000	51600	103	70	130	
Perfluorobutanesulfonic acid (PFBS)	ng/L	44300	40500	92	70	130	
Perfluorodecanoic acid (PFDA)	ng/L	50000	52300	105	70	130	
Perfluorododecanoic acid (PFDoA)	ng/L	50000	53700	107	70	130	
Perfluoroheptanoic acid (PFHpA)	ng/L	50000	51100	102	70	130	
Perfluorohexanoic acid (PFHxA)	ng/L	50000	49300	99	70	130	
Perfluorohexanesulfonic acid (PFHxS)	ng/L	45600	45200	99	70	130	
Perfluorononanoic acid (PFNA)	ng/L	50000	52300	105	70	130	
Perfluorooctanoic acid (PFOA)	ng/L	50000	51500	103	70	130	
Perfluorooctanesulfonic acid (PFOS)	ng/L	46300	45700	99	70	130	
Perfluorotetradecanoic acid (PFTeDA)	ng/L	50000	51000	102	70	130	
Perfluorotridecanoic acid (PFTrDA)	ng/L	50000	50300	101	70	130	
Perfluoroundecanoic acid (PFUdA)	ng/L	50000	53000	106	70	130	

7S ORGANICS INSTRUMENT SENSITIVITY CHECK

Report No:	220073108	Instrument ID:	QQQ2
Analysis Date:	08/07/2020 08:00	Lab File ID:	2200806A_62.d
Analytical Method:	EPA 537.1	Analytical Batch:	689642

ANALYTE	UNITS	TRUE	FOUND	% REC	LCL	UCL	Q
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ng/L	10.0	8.80	88	50	150	
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ng/L	10.0	8.56	85	50	150	
Perfluorobutanesulfonic acid (PFBS)	ng/L	8.88	6.90	78	50	150	П
Perfluorodecanoic acid (PFDA)	ng/L	10.0	8.24	82	50	150	
Perfluorododecanoic acid (PFDoA)	ng/L	10.0	10.3	104	50	150	
Perfluoroheptanoic acid (PFHpA)	ng/L	10.0	8.00	80	50	150	
Perfluorohexanoic acid (PFHxA)	ng/L	10.0	8.16	82	50	150	
Perfluorohexanesulfonic acid (PFHxS)	ng/L	9.12	7.51	82	50	150	
Perfluorononanoic acid (PFNA)	ng/L	10.0	8.32	83	50	150	
Perfluorooctanoic acid (PFOA)	ng/L	10.0	8.96	89	50	150	
Perfluorooctanesulfonic acid (PFOS)	ng/L	9.28	7.77	84	50	150	
Perfluorotetradecanoic acid (PFTeDA)	ng/L	10.0	8.32	83	50	150	
Perfluorotridecanoic acid (PFTrDA)	ng/L	10.0	8.32	84	50	150	
Perfluoroundecanoic acid (PFUdA)	ng/L	10.0	7.92	79	50	150	

7E ORGANICS CALIBRATION VERIFICATION

 Report No:
 220073108
 Instrument ID:
 QQQ2

 Analysis Date:
 08/07/2020 10:25
 Lab File ID:
 2200806A_73.d

 Analytical Method:
 EPA 537.1
 Analytical Batch:
 689642

ANALYTE	UNITS	TRUE	FOUND	% REC	LCL	UCL	Q
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ng/L	50000	56000	112	70	130	
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ng/L	50000	53300	107	70	130	
Perfluorobutanesulfonic acid (PFBS)	ng/L	44300	42200	95	70	130	
Perfluorodecanoic acid (PFDA)	ng/L	50000	51500	103	70	130	
Perfluorododecanoic acid (PFDoA)	ng/L	50000	54200	108	70	130	
Perfluoroheptanoic acid (PFHpA)	ng/L	50000	47500	95	70	130	
Perfluorohexanoic acid (PFHxA)	ng/L	50000	49400	99	70	130	
Perfluorohexanesulfonic acid (PFHxS)	ng/L	45600	44800	98	70	130	
Perfluorononanoic acid (PFNA)	ng/L	50000	50600	101	70	130	
Perfluorooctanoic acid (PFOA)	ng/L	50000	49300	99	70	130	
Perfluorooctanesulfonic acid (PFOS)	ng/L	46300	45500	98	70	130	
Perfluorotetradecanoic acid (PFTeDA)	ng/L	50000	49200	98	70	130	
Perfluorotridecanoic acid (PFTrDA)	ng/L	50000	49000	98	70	130	
Perfluoroundecanoic acid (PFUdA)	ng/L	50000	52000	104	70	130	

8F INTERNAL STANDARD AREA SUMMARY

Report No:	220073108	Standard ID:	1205 (ICAL Midpoint)
Analyst:	ВМН	Instrument ID:	QQQ2
Analysis Date:	08/06/20 19:25	Lab File ID:	2200806A_06.d
Analytical Method:	EPA 537 Rev. 1.1	Analytical Batch:	689642

		M2PFOA		M2PFHx/	4	M2PFD/	1	M4PFOS	S
		Area		Area		Area		Area	
STANDARD		86479	/	260599		86646		101016	
CLIENT SAMPLE ID	GCAL SAMP ID		#		#		#		#
MB2068380	2068380	99009		278826		95764		97274	T
LCS2068381	2068381	98613		281339		90993		96644	
LCSD2068382	2068382	100300		287070		98667		101010	
GL-POTABLE-21	22007310813	91339		266582		86210		96677	\Box
GL-POTABLE-21-DUP	22007310814	96569		272045		94580	П	96919	
GL-POTABLE-25	22007310815	92032	П	273558		82383		93713	
GL-FB-072920	22007310816	95923		274726		92002	\Box	99962	
GL-POTABLE-19	22007310817	91266		269592		87227		97407	
GL-POTABLE-14	22007310818	88339	\Box	260452		72026	П	86137	
GL-POTABLE-15	22007310819	100545		271880		92856	П	97894	\Box
GL-POTABLE-26	22007310820	92227		268604		90189	П	96198	\Box

AREA UPPER LIMIT = +50% of internal standard area AREA LOWER LIMIT = -50% of internal standard area

Column used to flag values outside QC limits

^{*} Value outside QC limits

2C WATER SEMIVOLATILE SURROGATE RECOVERY

	Report No: 220073108				Analytic	al M	ethod:	EP	A∕537 Re	v. 1	.1				_
				/		/	_								
			-												τοτ
	Client Sample ID	GCAL Sample ID	SMC1	#	SMC2	#	SMC3	#	SMC4	#	SMC5	#	SMC6	#	OUT
1.	GL-POTABLE-12	22007310801	113	L	106		89								0
2.	GL-POTABLE-12-DUP	22007310802	103		104		84					Г			0
3.	GL-POTABLE-12-MS	22007310803	100		97		97					Г		П	0
4.	GL-POTABLE-12-MSD	22007310804	110		98		91	Г				П			0
5.	GL-POTABLE-20	22007310805	105		106		84					П			0
6.	GL-POTABLE-24	22007310806	102		94		87					Г			0
7.	GL-POTABLE-23	22007310807	102		98		88					Г		Т	0
8.	GL-POTABLE-22	22007310808	103		97		84	Г							0
9.	GL-POTABLE-13	22007310809	99		97		76								0
10.	GL-FB-072820	22007310810	103		85		83	П							0
11.	GL-POTABLE-16	22007310811	100		95		78							Г	0
12.	GL-POTABLE-18	22007310812	96		97		92								0
13.	GL-POTABLE-21	22007310813	102		89	\neg	86	П							0
14.	GL-POTABLE-21-DUP	22007310814	102		87		93								0
15.	GL-POTABLE-25	22007310815	104		109		103							П	0
16.	GL-FB-072920	22007310816	110		94		110								0
17.	GL-POTABLE-19	22007310817	99		99		107								0
18.	GL-POTABLE-14	22007310818	95		93	\neg	89	Г						Н	0
19.	GL-POTABLE-15	22007310819	101		100		105	6						П	0
20 .	GL-POTABLE-26	22007310820	93		89		93							П	0
21 .	MB2067457	2067457	103		106		112							П	0
22 .	LCS2067458	2067458	104		98	\exists	105								0
23 .	LCSD2067459	2067459	113	П	111	T	114							П	0
24 .	MB2068380	2068380	100		97		101							Н	0
25 .	LCS2068381	2068381	102		103	\neg	106							Н	0
26 .	LCSD2068382	2068382	99		94		106								0

QC LIMITS

SMC 1	M5PFHxA	70	130	# Column to be used to flag recovery limits
SMC 2	M6PFDA	70	130	* Value outside of QC limits
SMC 3	d5-NEtFOSAA	70	130	D Surrogate diluted out
SMC 4				
SMC 5				

FORM II SV-1

SMC 6

4B SEMIVOLATILE METHOD BLANK SUMMARY

Report No:	0: 220073108		Method Blank ID:	2067457					
Matrix:	Water		Instrument ID:	QQQ2					
Sample Amt:	125 mL		Lab File ID:	2200804A_33.d					
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M ID	2.1 (mm)				
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1 Analyst:	ВМН				
Prep Date:	08/03/20		Analysis Date:	08/05/20 Time:	0053				
Prep Batch:	689113	··.	Analytical Batch:	689424					
Prep Method:	EPA 537 Rev. 1.1		Analytical Method:	EPA 537 Rev. 1.1					

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD

	CLIENT SAMPLE ID	GCAL SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
1.	LCS2067458	2067458	2200804A_34.d	08/05/20	0107
2.	LCSD2067459	2067459	2200804A_35.d	08/05/20	0120
3.	GL-POTABLE-12	22007310801	2200804A_44.d	08/05/20	0318
4.	GL-POTABLE-12-DUP	22007310802	2200804A_45.d	08/05/20	0332
5.	GL-POTABLE-12-MS	22007310803	2200804A_46.d	08/05/20	0345
6.	GL-POTABLE-12-MSD	22007310804	2200804A_47.d	08/05/20	0358
7.	GL-POTABLE-20	22007310805	2200804A_49.d	08/05/20	0424
8.	GL-POTABLE-24	22007310806	2200804A_50.d	08/05/20	0437
9.	GL-POTABLE-23	22007310807	2200804A_51.d	08/05/20	0451
10.	GL-POTABLE-22	22007310808	2200804A_52.d	08/05/20	0504
11 .	GL-POTABLE-13	22007310809	2200804A_53.d	08/05/20	0517
12.	GL-FB-072820	22007310810	2200804A_54.d	08/05/20	0530
13 .	GL-POTABLE-16	22007310811	2200804A_55.d	08/05/20	0543
14 .	GL-POTABLE-18	22007310812	2200804A_56.d	08/05/20	0557

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	220073108	Client Sample ID:	MB2067457
Collect Date:	NA Time: NA	GCAL Sample ID:	2067457
Matrix:	Water % Moisture: NA	Instrument ID:	QQQ2
Sample Amt:	125 mL	Lab File ID:	2200804A_33.d
Injection Vol.:	1.0 (µL)	GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	1000 (µL)	Dilution Factor:	1 Analyst: BMH
Prep Date:	08/03/20	Analysis Date:	08/05/20 Time: 0053
Prep Batch:	689113	Analytical Batch:	689424
Prep Method:	EPA 537 Rev. 1.1	Analytical Method:	EPA 537 Rev. 1.1

CONCENTRATION UNITS: ng/L

CAS	ANALYTE	RESULT	Q /	DL	LOD	LOQ
2991-50-6	NEtFOSAA	6.00	U	2.09	6.00	10.0
2355-31-9	NMeFOSAA	5.00	U	2.63	5.00	10.0
375-73-5	Perfluorobutanesulfonic acid	5.00	U	2.45	5.00	10.0
335-76-2	Perfluorodecanoic acid	5.00	U	2.21	5.00	10.0
307-55-1	Perfluorododecanoic acid	5.00	U	2.17	5.00	10.0
375-85-9	Perfluoroheptanoic acid	5.00	Ü	2.46	5.00	10.0
355-46-4	Perfluorohexanesulfonic acid	5.00	U	2.89	5.00	10.0
307-24-4	Perfluorohexanoic acid	5.00	U	2.27	5.00	10.0
375-95-1	Perfluorononanoic acid	5.00	U	3.14	5.00	10.0
1763-23-1	Perfluorooctanesulfonic acid	5.00	U	3.85	5.00	10.0
335-67-1	Perfluorooctanoic acid	5.00	U	2.28	5.00	10.0
376-06-7	Perfluorotetradecanoic acid	5.00	U	3.16	5.00	10.0
72629-94-8	Perfluorotridecanoic acid	5.00	U	2.56	5.00	10.0
2058-94-8	Perfluoroundecanoic acid	5.00	U	2.52	5.00	10.0

3C WATER SEMIVOLATILE LCS/LCSD RECOVERY

Report No:	220073108		
Prep Method:	EPA 537 Rev. 1.1 Prep	Prep Batch:	689113
Analytical Method:	EPA 537 Rev. 1.1	Analytical Batch:	689424

GCAL QC ID: 2067458		SPIKE	SAMPLE	LCS	LCS %		
ANALYTE	UNITS		RESULT	RESULT	REC #	QC	LIMITS
NEtFOSAA	ng/L	80	0	64.8	81	70	- 130
NMeFOSAA	ng/L	80	0	63.1	79	70	- 130
Perfluorobutanesulfonic acid	ng/L	70.8	0	64.4	91	70	- 130
Perfluorodecanoic acid	ng/L	80	0	64.7	81	70	- 130
Perfluorododecanoic acid	ng/L	80	0	61.8	77	70	- 130
Perfluoroheptanoic acid	ng/L	80	0	71.2	89	70	- 130
Perfluorohexanesulfonic acid	ng/L	73	0	62.2	85	70	- 130
Perfluorohexanoic acid	ng/L	80	0	71.2	89	70	- 130
Perfluorononanoic acid	ng/L	80	0	75	94	70	- 130
Perfluorooctanesulfonic acid	ng/L	74	0	62.3	84	70	- 130
Perfluorooctanoic acid	ng/L	80	0	68.2	85	70	- 130
Perfluorotetradecanoic acid	ng/L	80	0	56.2	70	70	- 130
Perfluorotridecanoic acid	ng/L	80	0	61.5	77	70	- 130
Perfluoroundecanoic acid	ng/L	80	0	56.2	70	70	- 130

GCAL QC ID: 2067459		SPIKE	LCSD	LCSD	/	%		QC L	.IMITS
ANALYTE	UNITS	ADDED	RESULT	% REC/	#	RPD 4	#	REC	RPD
NEtFOSAA	ng/L	80	69.2	86		7		70 - 130	0 - 30
NMeFOSAA	ng/L	80	73.2	91	\neg	15		70 - 130	0 - 30
Perfluorobutanesulfonic acid	ng/L	70.8	65.6	93	\neg	2		70 - 130	0 - 30
Perfluorodecanoic acid	ng/L	80	72.6	91	一	12		70 - 130	0 - 30
Perfluorododecanoic acid	ng/L	80	60.9	76		1		70 - 130	0 - 30
Perfluoroheptanoic acid	ng/L	80	72.9	91		2		70 - 130	0 - 30
Perfluorohexanesulfonic acid	ng/L	73	63.8	87	\neg	3		70 - 130	0 - 30
Perfluorohexanoic acid	ng/L	80	78.2	98	\Box	9		70 - 130	0 - 30
Perfluorononanoic acid	ng/L	80	76.7	96		2		70 - 130	0 - 30
Perfluorooctanesulfonic acid	ng/L	74	64.5	87		3	\neg	70 - 130	0 - 30
Perfluorooctanoic acid	ng/L	80	71.7	90	\neg	5		70 - 130	0 - 30
Perfluorotetradecanoic acid	ng/L	80	59	74		5		70 - 130	0 - 30
Perfluorotridecanoic acid	ng/L	80	57.6	72		7		70 - 130	0 - 30
Perfluoroundecanoic acid	ng/L	80	59.4	74	\neg	6		70 - 130	0 - 30

RPD :	0	out o	f	14	outs	outside limits		$\ensuremath{\text{\#}}$ Column to be used to flag recovery and RPD values with an asterisk
Spike Re	cover	ry:	0	out	of_	28	outside limits	* Values outside of QC limits

FORM III SV-1

3C WATER SEMIVOLATILE MS/MSD RECOVERY

 Report No:
 220073108
 Parent Sample ID:
 GL-POTABLE-12

 Prep Method:
 EPA 537 Rev. 1.1 Prep
 Prep Batch:
 689113

 Analytical Method:
 EPA 537 Rev. 1.1
 Analytical Batch:
 689424

GCAL QC ID: 22007310803		SPIKE	SAMPLE	MS	MS %		
ANALYTE	UNITS		RESULT	RESULT	REC #	QC	LIMITS
NEtFOSAA	ng/L	80	.031	55.8	70	70	- 130
NMeFOSAA	ng/L	80	.092	60.3	75	70	- 130
Perfluorobutanesulfonic acid	ng/L	70.8	.113	59.7	84	70	- 130
Perfluorodecanoic acid	ng/L	80	.202	66.1	82	70	- 130
Perfluorododecanoic acid	ng/L	80	.069	55.2	(69) *	70	- 130
Perfluoroheptanoic acid	ng/L	80	.044	78.2	98	70	- 130
Perfluorohexanesulfonic acid	ng/L	73	.025	62.8	86	70	- 130
Perfluorohexanoic acid	ng/L	80	.548	72.9	90	70	- 130
Perfluorononanoic acid	ng/L	80	.277	72.2	90	70	- 130
Perfluorooctanesulfonic acid	ng/L	74	.362	63.5	85	70	- 130
Perfluorooctanoic acid	ng/L	80	.11	70.7	88	70	- 130
Perfluorotetradecanoic acid	ng/L	80	.107	16.4	(20) *	70	- 130
Perfluorotridecanoic acid	ng/L	80	.094	36.8	46 +	70	- 130
Perfluoroundecanoic acid	ng/L	80	.026	56	70	70	- 130

GCAL QC ID: 22007310804		SPIKE	MSD	MSD %		%	/	QC L	IMITS
ANALYTE	UNITS	ADDED	RESULT	REC	#	RPD _	#	REC	RPD
NEtFOSAA	ng/L	80	53.1	66	*	5		70 - 130	0 - 30
NMeFOSAA	ng/L	80	57.9	72		4		70 - 130	0 - 30
Perfluorobutanesulfonic acid	ng/L	70.8	62.3	88		4		70 - 130	0 - 30
Perfluorodecanoic acid	ng/L	80	62.1	77		6		70 - 130	0 - 30
Perfluorododecanoic acid	ng/L	80	57.3	72		4		70 - 130	0 - 30
Perfluoroheptanoic acid	ng/L	80	75.7	95		3		70 - 130	0 - 30
Perfluorohexanesulfonic acid	ng/L	73	62.7	86		.07		70 - 130	0 - 30
Perfluorohexanoic acid	ng/L	80	72.3	90		.8		70 - 130	0 - 30
Perfluorononanoic acid	ng/L	80	75	93		4		70 - 130	0 - 30
Perfluorooctanesulfonic acid	ng/L	74	61.6	83		3		70 - 130	0 - 30
Perfluorooctanoic acid	ng/L	80	74.1	92		5		70 - 130	0 - 30
Perfluorotetradecanoic acid	ng/L	80	21.4	/27	*	26		70 - 130	0 - 30
Perfluorotridecanoic acid	ng/L	80	48.1	60	*	27		70 - 130	0 - 30
Perfluoroundecanoic acid	ng/L	80	51.3	64	*	9		70 - 130	0 - 30

RPD:	0	out o	f_	14	outs	ide lim	its	# Column to be used to flag recovery and RPD values with an asterisk
Spike Re	ecove	ry:	7	out	of_	28	_outside limits	* Values outside of QC limits

FORM III SV-1

4B SEMIVOLATILE METHOD BLANK SUMMARY

Report No:	220073108	*	Method Blank ID:	2068380	
Matrix:	Water		Instrument ID:	QQQ2	
Sample Amt:	125 mL		Lab File ID:	2200806A_52.d	
Injection Vol.:	1.0	(µL)	GC Column:	ACC-C18-30M ID	2.1 (mm)
Prep Final Vol.:	1000	(µL)	Dilution Factor:	1 Analyst:	ВМН
Prep Date:	08/03/20		Analysis Date:	08/07/20 Time:	0549
Prep Batch:	689285		Analytical Batch:	689642	
Prep Method:	EPA 537 Rev. 1.1		Analytical Method:	EPA 537 Rev. 1.1	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD

		GCAL	LAB	DATE	TIME
	CLIENT SAMPLE ID	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
1.	LCS2068381	2068381	2200806A_53.d	08/07/20	0602
2.	LCSD2068382	2068382	2200806A_54.d	08/07/20	0615
3.	GL-POTABLE-21	22007310813	2200806A_55.d	08/07/20	0628
4.	GL-POTABLE-21-DUP	22007310814	2200806A_56.d	08/07/20	0641
5.	GL-POTABLE-25	22007310815	2200806A_57.d	08/07/20	0655
6.	GL-FB-072920	22007310816	2200806A_58.d	08/07/20	0708
7.	GL-POTABLE-19	22007310817	2200806A_59.d	08/07/20	0721
8.	GL-POTABLE-14	22007310818	2200806A_60.d	08/07/20	0734
9.	GL-POTABLE-15	22007310819	2200806A_61.d	08/07/20	0747
10.	GL-POTABLE-26	22007310820	2200806A_63.d	08/07/20	0814

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Report No:	220073108	Client Sample ID:	MB2068380
Collect Date:	NA Time: NA	GCAL Sample ID:	2068380
Matrix:	Water % Moisture: NA	Instrument ID:	QQQ2
Sample Amt:	125 mL	Lab File ID:	2200806A_52.d
Injection Vol.:	1.0 (µL)	GC Column:	ACC-C18-30M ID 2.1 (mm)
Prep Final Vol.:	1000 (µL)	Dilution Factor:	1 Analyst: BMH
Prep Date:	08/03/20	Analysis Date:	08/07/20 Time: 0549
Prep Batch:	689285	Analytical Batch:	689642
Prep Method:	EPA 537 Rev. 1.1	Analytical Method:	EPA 537 Rev. 1.1

CONCENTRATION UNITS: ng/L

CAS	ANALYTE	RESULT	Q /	DL	LOD	LOQ
2991-50-6	NEtFOSAA	6.00	U	2.09	6.00	10.0
2355-31-9	NMeFOSAA	5.00	U	2.63	5.00	10.0
375-73-5	Perfluorobutanesulfonic acid	5.00	U	2.45	5.00	10.0
335-76-2	Perfluorodecanoic acid	5.00	U	2.21	5.00	10.0
307-55-1	Perfluorododecanoic acid	5.00	U	2.17	5.00	10.0
375-85-9	Perfluoroheptanoic acid	5.00	U	2.46	5.00	10.0
355-46-4	Perfluorohexanesulfonic acid	5.00	U	2.89	5.00	10.0
307-24-4	Perfluorohexanoic acid	5.00	U	2.27	5.00	10.0
375-95-1	Perfluorononanoic acid	5.00	U	3.14	5.00	10.0
1763-23-1	Perfluorooctanesulfonic acid	5.00	U	3.85	5.00	10.0
335-67-1	Perfluorooctanoic acid	5.00	U	2.28	5.00	10.0
376-06-7	Perfluorotetradecanoic acid	5.00	U	3.16	5.00	10.0
72629-94-8	Perfluorotridecanoic acid	5.00	U	2.56	5.00	10.0
2058-94-8	Perfluoroundecanoic acid	5.00	U	2.52	5.00	10.0

3C WATER SEMIVOLATILE LCS/LCSD RECOVERY

Report No:	220073108		
Prep Method:	EPA 537 Rev. 1.1 Prep	Prep Batch:	689285
Analytical Method:	EPA 537 Rev. 1.1	Analytical Batch:	689642

GCAL QC ID: 2068381 ANALYTE	UNITS	SPIKE ADDED	SAMPLE RESULT	LCS RESULT	LCS % REC /#	QC LIMITS
NEtFOSAA	ng/L	80	0	77.6	97	70 - 130
NMeFOSAA	ng/L	80	0	71.6	90	70 - 130
Perfluorobutanesulfonic acid	ng/L	70.8	0	58.9	83	70 - 130
Perfluorodecanoic acid	ng/L	80	0	74	93	70 - 130
Perfluorododecanoic acid	ng/L	80	0	69.4	87	70 - 130
Perfluoroheptanoic acid	ng/L	80	0	65.9	82	70 - 130
Perfluorohexanesulfonic acid	ng/L	73	0	65.5	90	70 - 130
Perfluorohexanoic acid	ng/L	80	0	69.4	87	70 - 130
Perfluorononanoic acid	ng/L	80	0	77.8	97	70 - 130
Perfluorooctanesulfonic acid	ng/L	74	0	68.3	92	70 - 130
Perfluorooctanoic acid	ng/L	80	0	69.9	87	70 - 130
Perfluorotetradecanoic acid	ng/L	80	0	69	86	70 - 130
Perfluorotridecanoic acid	ng/L	80	0	68	85	70 - 130
Perfluoroundecanoic acid	ng/L	80	0	72.3	90	70 - 130

GCAL QC ID: 2068382		SPIKE	LCSD	LCSD		%		QC L	IMITS
ANALYTE	UNITS	ADDED	RESULT	% REE	#	RPD	#	REC	RPD
NEtFOSAA	ng/L	80	75.3	94		3		70 - 130	0 - 30
NMeFOSAA	ng/L	80	70.7	88		1		70 - 130	0 - 30
Perfluorobutanesulfonic acid	ng/L	70.8	58.9	83		.04		70 - 130	0 - 30
Perfluorodecanoic acid	ng/L	80	72.3	90		2		70 - 130	0 - 30
Perfluorododecanoic acid	ng/L	80	65.9	82		5		70 - 130	0 - 30
Perfluoroheptanoic acid	ng/L	80	66.2	83		.5		70 - 130	0 - 30
Perfluorohexanesulfonic acid	ng/L	73	62.4	86		5		70 - 130	0 - 30
Perfluorohexanoic acid	ng/L	80	68.8	86		.8		70 - 130	0 - 30
Perfluorononanoic acid	ng/L	80	74.7	93		4		70 - 130	0 - 30
Perfluorooctanesulfonic acid	ng/L	74	64	86		6		70 - 130	0 - 30
Perfluorooctanoic acid	ng/L	80	70.2	88		.5		70 - 130	0 - 30
Perfluorotetradecanoic acid	ng/L	80	58.5	73		16		70 - 130	0 - 30
Perfluorotridecanoic acid	ng/L	80	67.9	85		.1		70 - 130	0 - 30
Perfluoroundecanoic acid	ng/L	80	66.9	84	一	8		70 - 130	0 - 30

RPD:0	out of	14	outside limit	s	# Column to be used to flag recovery and RPD values with an asterisk
Spike Recovery:		out	of 28	outside limits	* Values outside of QC limits

FORM III SV-1

Sample Summary

LAB ID	Client ID	Matrix	Collect Date/Time	Receive Date/Time	
22007310801	GL-POTABLE-12	Water	07/28/2020 09:20	07/30/2020 09:42	
22007310802	GL-POTABLE-12-DUP	Water	07/28/2020 09:20	07/30/2020 09:42	
22007310803	GL-POTABLE-12-MS	Water	07/28/2020 09:20	07/30/2020 09:42	
22007310804	GL-POTABLE-12-MSD	Water	07/28/2020 09:20	07/30/2020 09:42	
22007310805	GL-POTABLE-20	Water	07/28/2020 10:15	07/30/2020 09:42	
22007310806	GL-POTABLE-24	Water	07/28/2020 11:10	07/30/2020 09:42	
22007310807	GL-POTABLE-23	Water	07/28/2020 13:20	07/30/2020 09:42	
22007310808	GL-POTABLE-22	Water	07/28/2020 14:15	07/30/2020 09:42	
22007310809	GL-POTABLE-13	Water	07/28/2020 15:14	07/30/2020 09:42	
22007310810	GL-FB-072820	Water	07/28/2020 15:25	07/30/2020 09:42	
22007310811	GL-POTABLE-16	Water	07/28/2020 16:05	07/30/2020 09:42	
22007310812	GL-POTABLE-18	Water	07/28/2020 16:28	07/30/2020 09:42	
22007310813	GL-POTABLE-21	Water	07/29/2020 09:12	07/30/2020 09:42	
22007310814	GL-POTABLE-21-DUP	Water	07/29/2020 09:12	07/30/2020 09:42	
22007310815	GL-POTABLE-25	Water	07/29/2020 10:03	07/30/2020 09:42	
22007310816	GL-FB-072920	Water	07/29/2020 10:05	07/30/2020 09:42	
22007310817	GL-POTABLE-19	Water	07/29/2020 10:30	07/30/2020 09:42	
22007310818	GL-POTABLE-14	Water	07/29/2020 13:22	07/30/2020 09:42	
22007310819	GL-POTABLE-15	Water	07/29/2020 13:55	07/30/2020 09:42	
22007310820	GL-POTABLE-26	Water	07/29/2020 14:20	07/30/2020 09:42	

Case Narrative

Client: AECOM-East Report: 220073108

Pace Analytical Gulf Coast received and analyzed the sample(s) listed on the Report Sample Summary page of this report. Receipt of the sample(s) is documented by the attached chain of custody. This applies only to the sample(s) listed in this report. No sample integrity or quality control exceptions were identified unless noted below.

This report was completed in accordance with DOD QSM 5.1.1 as specified in the contract.

SEMI-VOLATILES MASS SPECTROMETRY

In the EPA 537.1 analysis for prep batch 689113, the MS/MSD exhibited recovery failures. All LCS/LCSD recoveries are acceptable.

SAMPLE RECEIVING CHECKLIST

===	
	*
	=-
	==~
	= ~

SAMPLE DELIVERY GROUP 220073108	OUP 220073	108	CHECKLIST		KES	9
Client PM AEC 4859 - AECOM-East	Transport Method	Method	Samples received with proper thermal preservation?		>	
	;		Radioactivity is <1600 cpm? If no, record cpm value in notes section.	in notes section.	>	
Profile Number 279946	Received By McOune, Dodie N.	Z Z	COC relinquished and complete (including sampleIDs, collect times, and sampler)?	s, collect times, and sampler)?	>	
			All containers received in good condition and within hold time?	old time?	>	
Line Item(s)	Receive Date(s)	e(s)	All sample labels and containers received match the chain of custody?	chain of custody?	>	
	ON SOLVE		Preservative added to any containers?			>
			If received, was headspace for VOC water containers < 6mm?	< 6mm?	>	
			Samples collected in containers provided by Pace Gulf Coast?	ulf Coast?	>	
COOLERS			DISCREPANCIES	LAB PRESERVATIONS		
Airbill Thermon	Thermometer ID: E26	Temp °C	None	None		
9022-7622-9220		2.4				
NOTES						
Revision 1.6					- A	Page 1 of 1

Client ID: 4859 - AECOM-East			, (4) sodium hydroxide, (5) zinc acetate,	(c) memanol, (7) soorum bisulitie, (8) soorum thiosuliate, (9) hexane, (A) ascorbc acid, (8) ammonlum sulfate, (C) ammonlum hydroxide, (D) TSP, (U) Unpreserved, (O) Other	Lab Profile/Line:		ures Present Y N ature Present Y N	X	Samples Received on Ice Y N NA VOA - Headspace Acceptable Y N NA USDA Regulated Soils	Samples in Holding Time Y N NA Residual Chlorine Present Y N NA	table Y N	Suilde Present Lead Acetate Strips:	LAB USK ONLY: Lab Sample # / Comments:			-ce	9	h	9	6	7	8	9	0)	ᆵ	Therm ID#:	r: 00	Comments: oC	and they are	Trip Blank Received: Y N NA HCL MeOH TSP Other	Non Conformance(s): Page: 1
Client ID: 4859 - 7	PM: AEC		ric acid, (3) hydrochloric acid	i thiosulfate, (9) hexane, (A) arrived, (0) Other	Lab P	E E	3 3 3	O CO B	Sami VOA USD	Sar	Sas	re ga	r r												s): Y N N/A	732		MTJL LAB USE ONLY	Table #:	Acctnum: Template: Praiogio	
LAB USE UNLY- Affix Wor	ALL SHAC	Container Preservative Ty.	Types: (1) nitric acid, (2) sulfur) soonum bisuitate, (8) sodium sydroxide, (D) TSP, (U) Unpres	Analyses	N ₁				/	_		×	<											SHORT HOLDS PRESENT (<72 hours):	king#: 2375732	elved via:	ime: S1	2	Date/Time: Acctnum: Acctnum: Off20 73 9.4 Developin:	
		(** Preservative	(c) methanol, (v)		/			Fo	is	Pou	HÐW T	A9:		×	X	×	×	X	×	×	×	×	×	SHORT	Lab Tracking #:		Date	FEDE	Date	Date
lequest Document	Adress	20876	Medanam Com		- 1 -	MI / Gran Ledgel IPTI IMTI ICT MET	Compliance Monitoring?	#: n Code:	immediately Packed on Ice:	Field Filtered (if applicable):		water (WW), hther (OT)	te End Res # of		12	1	47	1,1	×,	6)	7	7	7	_	Je Dry None		O cpm): Y N NA	Received by/Company: (Signature)	TRANSFER TO	Received by/Company: (Signature)	Received by/Company: (Signature)
IAIN-OF-CUS I OUY Analytical Request Docume Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields	Billing Information: (Same addRess	OH,	040	o/Address:	3	M Ledgel	Compliance [] Yes	DW PWS ID #: DW Location Code:	immediately X Yes	Field Filtere		ster (GW), Wastev y (B), Vapor (V), C	. Composite End	ne Date	7 02	20	07	2	N	0	20	5	\ \ \	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	: KWetk Blue	Used:	Radchem sample(s) screened (<500 cpm):	Received by/	TEAN		Received by/
Chain-of-Custody is a LEGAL DOCUMENT - Con	Billing Informati	Germantens	Email To:	Site Collection Info/Address	State: Coun	MI / Gra			;pa	Next Day	[] 2 Day [] 3 Day [] 4 Day [] 5 Day (Expedite Charges Apply)	(DW), Ground Wassaver (TS), Bioassaver	Collected (or Composite Start)	Date Time	4126/20	0260	0760	0280	10 15	1110	1320	1415	H151	4 1525	type of ice Used:	Packing Material Used:	Radchem sample	Date/Time:	3/20/20 1800	Date/Time: 07(30/20 9:42	Date/Time:
Chain-of-Custody		Sute 150				4	Site/Facility ID #:	Purchase Order #: Quote #:	Turnaround Date Required:		Day [] 3 Day [] 4 Day (Expedite Charges Apply)	: Drinking Water (WP), Air (AR), Tis	Comp /		M Grab			+					+	ė l	ssible Hazards:			Date	1/6	Date	Date
Pace Analytical*	Company: AECOM	SAP. (RAHEL DE		P .	Customer Project Name/Number:	. \	8-5405	an	ture):	Sample Disposal: Rush:		 Matrix Codes (Insert in Matrix box below): Drinking Water (DW), Ground Water (GW), Wastewater (WW), Product (P), Soil/Soild (SL), Oil (OL), Wipe (WP), Air (AR), Tissue (TS), Bioassay (B), Vapor (V), Other (OT) 	Customer Sample ID Matrix *		St- Forable -12 DW	in-Portable -12-ENP	2 - Potable - 12-MS	-Parable-12	4	Si - Yatake - 24	GL-Porabu-33	Patable -	- Portable 15	GE-13-072820	Customer Kemarks / Special Conditions / Possible Hazards:			Relinquished by/Company: (Signature)	The H	Relinquished by/Company: (Signature)	Relinquished by/Company: (Signature)

Client ID: 4859 - AECOM-East	80		(4) sodium hydroxide, (5) zinc acetate,	corbic acid, (B) ammonium sulfate,	Lab Profile/Line:	99	resent/Intact Y N res Present Y N ture Present Y N	X X X	Les Received on Ice Y N - Headspace Acceptable Y N A Regulated Soils Y N	Samples in Holding Time Y N NA Residual Chlorine Present Y N NA	Acceptable Y N	Suring Present Lead Acetate Strips:	Lab Sample # / Comments:			<u>6</u>	13	<i>I</i> I	5	0/	7	&	6	8	Temp Blank Bereined: V N NA	Calint	Cooler 1 Therm Corr. Factor:		an I'm an	Trip Blank Received: Y N NA HCL MeOH TSP Other	Non Conformance(s): Page: 2
	SDG:	IM: AEC	ufuric acid, (3) hydrochloric acid, (num thiosultate, (9) hexane, (A) as yreserved, (0) Other	Lab Pro	Lab	Cust	Corr	Sang Sang Nov	Sam	a Hd	Leac	Lab													2375730	Courier Pace Courier	15	Table #:	Acctnum: Template: Prelogin:	PM:
LAB USE ONLY- Affix Work	ALL SHAD	Container Preservative Ty	Preservative Types: (1) nitric acid, (2) su	(b) methanov (7/ sodium bisuriate, (b) sodium thiosulfate, (9) hexane, (A) ascorbic acid, (B) ammonium sulfate, (C) ammonium hydroxide, (D) TSP, (U) Unpreserved, (O) Other	Analyses			/	ts	i's	Pou	Meth	AN	<u>\</u>	×	×	×	×	×	X	×	~	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	CLOBT HOUSE BESTEWN	SHOWI HOLDS PRESENT (NZ IN		Samples received via: (FEDEX) UPS Client		北京	ime: 0/20 9:47	
l Request Document	sam address)	JE802 OF	5	10 10 10 15	T	Commercial PTI 1MTI 1CT NET	Compliance Monitoring?	DW PWS ID #: DW Location Code:	Immediately Packed on Ice:	ered	Analysis:	V), Wastewater (WW), apor (V), Other (OT)	Composite End Res # of Ctns	- 1	2/	12	17	7	7	7 X	71	2	7	Wet Blie Dry None	100		sened (<500 cpm): Y N NA	Roceived by/Company: (Signature)	TRANSFER TO	Received by/Company: (Signature)	4 : 1
CHAIN-OF-CUSTODY Analytical Request Docume chain-of-custodyts a teGAL DOCUMENT-complete all relevent fields	Billing Information: (SamL	OH, numbranes OSI		Site Collection Info/Add	Country Country City	MI / Grad IP				I Nevt Dav	y [] 4 Day [] 5 Day tharges Apply)	g Water (DW), Ground Water (GV (AR), Tissue (TS), Bioassay (B), Vi	Comp / Collected (or Grab Composite Start)	Date Time	Grap 21/26/20 1605	Grab 3/26/20 1628	Grab 729/20 0912	7160	1003	1005	1630	1327	1355	Tyne of Ice Head:	Darking Material Land	TOPO OF THE PROPERTY OF THE PR	Radchem sample(s) screened (<500 cpm):	Date/Time: KOO Re	07/62/E	Date/Time: Re 7130 20 9:42	
CHAIN-C Pace Analytical chain-of	Company: AECOM	12420 MIRSTON COMET CT, Suite	MARChall	11	18	HMQ - 60001 24125899	8	Collected By (print): Admana Tan Quote #:	Collected By (signature): Turnaround Date Required:	Sample Disposal: Rush:		Matrix Codes (Insert in Matrix box below): Drinking Water (DW), Ground Water (GW), Wastewater (WV) Product (P), Soll/Solid (SL), Oil (OL), Wipe (WP), Air (AR), Tissue (TS), Bioassay (B), Vapor (V), Other (OT)	Customer Sample ID Matrix *		SL- Potable-110 DW	1- PHADER - 18 DIN	DM	51- Potrable-21- Dye	Si-principle -25	-FB-0329	3 - Potable - 19	L-Patab	-Kotabla	Customer Remarks / Special Conditions / Possible Handle				Relinquished by/Company: (Signature)	THE A	Refinquished blyCompany: (Signature)	Relinquished by/Company: (Signature)

Data Qualifying Codes

Two types of data qualifying codes or flags are applied in the course of the data review. The data validation flags indicate data that are not usable for decision-making, more than normally biased and/or variable, or not representative of field conditions. These codes and their definitions are presented below in the hierarchy stipulated in the USEPA Contract Laboratory Program National Functional Guidelines for Organic (January 2017) Data Review.

Data Validation Flags

Flag	Interpretation
R	The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
U	The analyte was analyzed for, but not detected at a level greater than or equal to the level of the adjusted Detection Limit (DL) for sample and method.
J+	Reported value may not be accurate or precise, but the result may be biased high.
J-	Reported value may not be accurate or precise, but the result may be biased low.
J	The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample (due either to the quality of the data generated because certain quality control criteria were not met, or the concentration of the analyte was below the Limit of Detection (LOD).
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
UJ	The analyte was not detected at a level greater than or equal to the adjusted DL. However, the reported adjusted DL is approximate and may be inaccurate or imprecise.
С	This qualifier applies to pesticide and Aroclor results when the identification has been confirmed by gas Chromatograph/Mass Spectrometer (GC/MS)
X	This qualifier applies to pesticide and Aroclor results when GC/MS analysis was attempted but was unsuccessful.

The other type of code used by AECOM is a "Reason Code". The reason code indicates the type of quality control failure that led to the application of the data validation flag.

Reason Codes

Code	Description
a	Tracer recovery (radiochemical data only)
be	Equipment blank contamination
bf	Field blank contamination
bl	Laboratory blank contamination
bm	Missing Blank Information
с	Calibration issue
cl	Clean-up standard recovery
ср	Insufficient in growth (radiochemical data only)
cr	Chromatographic resolution
d	Reporting limit raised due to chromatographic interference
e	Ether interference
fd	Field duplicate RPDs
g	Chromatographic pattern match issue
h	Holding times
i	Internal standard areas
ii	Injection internal standard area or retention time exceedance
k	Estimated Maximum Possible Concentrations
1	LCS recoveries
lc	Labeled compound recovery
ld	Laboratory duplicate RPDs (matrix duplicate, MSD, LCSD)
m	Matrix spike recovery
nb	Negative laboratory blank contamination
p	Chemical preservation issue
pe	Post Extraction Spike
q	Quantitation issue
r	Dual column RPD
rp	Re-extraction precision issue [PAHs only]

THIS PAGE INTENTIONALLY BLANK

Appendix B Field Documentation

THIS PAGE INTENTIONALLY BLANK

Appendix B1 Logs of Daily Notice of Field Activities

THIS PAGE INTENTIONALLY BLANK

Date	AECOM Personnel	Weather	Summary Daily Activities	Issues	Progress to Date	Subcontractor(s)/ Visitors
			MOBILIZATION NO. 4 (Residential Sampling)			
7/29/2020	Stephanie Tjan (SS)	Sunny, High 84°F, Low 60°F	- AECOM held a Tailgate SH&E meeting with the Michigan Department of Military and Veterans Affairs (DMVA). Reviewed scope of work, SH&E concerns, AHAs, and daily PFAS sampling checklist. - The last remaining residence with a signed Right-of-Entry (ROE) was contacted and able to be sampled today. - Completed sampling at six (6) residential homes. - Collected a field blank sample. - One cooler of samples was packed and shipped to the analytical laboratory, Pace Gulf Coast Analytical, via FedEx for delivery on Thursday, 30 July.	- None	Residential Wells Sampled: 14/14	- Patricia Lyman (DMVA)
7/28/2020	Stephanie Tjan (SS)	Sunny, High 87°F, Low 64°F	- AECOM held a Tailgate SH&E meeting with the Michigan Department of Military and Veterans Affairs (DMVA). Reviewed scope of work, SH&E concerns, AHAs, and daily PFAS sampling checklist Completed sampling at eight (8) residential homes Collected a field blank sample.	- None	Residential Wells Sampled: 8/13	- Patricia Lyman (DMVA)
			MOBILIZATION NO. 3 (Residental Sampling)			
1/23/2020	Scott Kalemba (SS)	20s, Sunny	- AECOM held a Tailgate SH&E meeting with the Michigan Department of Military and Veterans Affairs (DMVA). Reviewed scope of work, SH&E concerns, AHAs, and daily PFAS sampling checklist Completed sampling at two (2) residential homes One cooler of samples was packed and shipped to the analytical laboratory, GCAL, via FedEx for delivery on Friday, 24 January.	- None	Residential Wells Sampled: 11/11	- Patricia Lyman (DMVA)
1/22/2020	Scott Kalemba (SS)	20s, Sunny	- AECOM mobilized to Grand Ledge AASF to conduct residential well sampling of the surrounding homes AECOM held a Tailgate SH&E meeting with the Michigan Department of Military and Veterans Affairs (DMVA) and Department of Health and Human Services (DHHS). Reviewed scope of work, SH&E concerns, AHAs, and daily PFAS sampling checklist Completed sampling at nine (9) residential homesCollected a FRB.	- None	Residential Wells Sampled: 9/11	- Patricia Lyman (DMVA) - Susan Manente (DHHS)

Date	AECOM Personnel	Weather	Summary Daily Activities	Issues	Progress to Date	Subcontractor(s)/ Visitors
12/20/2019	- Scott Kalemba (SS)	Sunny, High 36°F, Low 27°F	AECOM checked in at the Gate Guard and base personnel upon arrival onsite. - AECOM held an internal Tailgate SH&E meeting. Reviewed scope of work, SH&E concerns, AHAs, daily PFAS sampling checklist, and airfield operation protocols. - Completed groundwater sampling of monitoring well AOI 1-12. - Location data were collected using a handheld GPS for the areas where IDW was placed. - One cooler of samples was packed and shipped to the analytical laboratory, GCAL, via FedEx for delivery on Saturday 12/21/19. - Groundwater sampling activities are complete. - AECOM demobilized from Grand Ledge.	- None	- Boring Locations: 7/7 - MW Developed: 7/7 - GW Samples: 7/7 - Surface Soil Samples: 5/5 - Surface Water Samples: 8/8 - Sediment Samples: 5/5	- None
12/19/2019	- Scott Kalemba (SS)	Sunny, High 32°F, Low 21°F	AECOM checked in at the Gate Guard and base personnel upon arrival onsite. - AECOM held an internal Tailgate SH&E meeting. Reviewed scope of work, SH&E concerns, AHAs, daily PFAS sampling checklist, and airfield operation protocols. - Completed groundwater sampling of monitoring wells AOI 1-13, AOI 1-14, and AOI 1-15.	- None	- Boring Locations: 7/7 - MW Developed: 7/7 - GW Samples: 6/7 - Surface Soil Samples: 5/5 - Surface Water Samples: 8/8 - Sediment Samples: 5/5	- None
12/18/2019	- Scott Kalemba (SS)	Partly Cloudy, High 18°F, Low 10°F	AECOM checked in at the Gate Guard and base personnel upon arrival onsite. - AECOM held an internal Tailgate SH&E meeting. Reviewed scope of work, SH&E concerns, AHAs, daily PFAS sampling checklist, and airfield operation protocols. - Completed well development at AOI 1-12. - Completed groundwater sampling of monitoring wells AOI 1-11 and AOI 2-4.	- None	- Boring Locations: 7/7 - MW Developed: 7/7 - GW Samples: 3/7 - Surface Soil Samples: 5/5 - Surface Water Samples: 8/8 - Sediment Samples: 5/5	- None
12/17/2019	- Scott Kalemba (SS)	Partly Cloudy, High 32°F, Low 16°F	- AECOM mobilized to Grand Ledge AASF to continue the SI field work. - Upon arrival, AECOM checked in at the Gate Guard and base personnel, reviewed the scope of work and airfield safety protocols. AECOM will contact Flight Operations via cell phone to request approval before any movement to, from, or within the airfield. - AECOM held an internal Tailgate SH&E meeting. Reviewed scope of work, SH&E concerns, AHAs, daily PFAS sampling checklist, and airfield operation protocols. - Completed well development at AOI 1-11 and AOI 1-13.	- None	- Boring Locations: 7/7 - MW Developed: 6/7 - GW Samples: 1/7 - Surface Soil Samples: 5/5 - Surface Water Samples: 8/8 - Sediment Samples: 5/5	- None

Date	AECOM Personnel	Weather	Summary Daily Activities	Issues	Progress to Date	Subcontractor(s)/ Visitors
12/6/2019		Partly Cloudy, High 36°F, Low 21°F	- AECOM and CTS checked in at the Gate Guard and base personnel upon arrival onsite AECOM held a Tailgate SH&E meeting with CTS. Reviewed scope of work, SH&E concerns, AHAs, daily PFAS sampling checklist, and airfield operation protocols Completed soil boring and subsequent well installation at AOI 1-12. Well screen is set at 37-47 ft bgs CTS completed setting well pads IDW was placed into 55-gallon steel drums AECOM and CTS demobilized from Grand Ledge.	- Grand Ledge AASF building manager Reinmann advised AECOM that Site restoration activities can be completed in the Spring. - AECOM will be mobilizing back to the Site, the week of December 15th, to complete well development and well sampling on the remaining wells.	- Boring Locations: 7/7 - MW Developed: 4/7 - GW Samples: 1/7 - Surface Soil Samples: 5/5 - Surface Water Samples: 8/8 - Sediment Samples: 5/5	- Chris Banlen, CTS - Reggie Castro, CTS - Jose Perales, CTS
12/5/2019		Partly Cloudy, High 39°F, Low 34°F	- AECOM and CTS checked in at the Gate Guard and base personnel upon arrival onsite AECOM held a Tailgate SH&E meeting with CTS. Reviewed scope of work, SH&E concerns, AHAs, daily PFAS sampling checklist, and airfield operation protocols Completed soil boring and subsequent well installation at AOI 1-13. Well screen is set at 42-52 ft bgs Completed well development at AOI 1-14 and AOI 2-4 CTS began setting well pads and site restoration IDW was placed into 55-gallon steel drums.	- None	- Boring Locations: 6/7 - MW Developed: 4/7 - GW Samples: 1/7 - Surface Soil Samples: 5/5 - Surface Water Samples: 8/8 - Sediment Samples: 5/5	- Chris Banlen, CTS - Reggie Castro, CTS - Jose Perales, CTS
12/4/2019	-Anay Shah (SSHO)	Scattered Snow and Windy, High 34°F, Low 28°F	- AECOM and CTS checked in at the Gate Guard and base personnel upon arrival onsite AECOM held a Tailgate SH&E meeting with CTS. Reviewed scope of work, SH&E concerns, AHAs, daily PFAS sampling checklist, and airfield operation protocols Completed well installation at AOI 1-11. Well screen is set at 30-40 ft bgs Completed soil boring and subsequent well installation at AOI 1-14. Well screen is set at 50-60 ft bgs Completed well development at AOI 1-15 IDW was placed into 55-gallon steel drums.	- Well development equipment malfunctioned while developing AOI 2-4. Will complete well development at AOI 2-4 on Thursday, December 5th.	- Boring Locations: 5/7 - MW Developed: 2/7 - GW Samples: 1/7 - Surface Soil Samples: 5/5 - Surface Water Samples: 8/8 - Sediment Samples: 5/5	- Chris Banlen, CTS - Reggie Castro, CTS - Jose Perales, CTS

Date	AECOM Personnel	Weather	Summary Daily Activities	Issues	Progress to Date	Subcontractor(s)/ Visitors
12/3/2019		Overcast and Windy, High 36°F, Low 32°F	- AECOM and CTS checked in at the Gate Guard and base personnel upon arrival onsite AECOM held a Tailgate SH&E meeting with CTS. Reviewed scope of work, SH&E concerns, AHAs, daily PFAS sampling checklist, and airfield operation protocols Completed well installation at AOI 1-15. Well screen is set at 60-75 ft bgs Completed soil boring and subsequent well installation at AOI 2-4. Well screen is set at 25-35 ft bgs IDW was placed into 55-gallon steel drums.	- None	- Boring Locations: 4/7 - MW Developed: 1/7 - GW Samples: 1/7 - Surface Soil Samples: 5/5 - Surface Water Samples: 8/8 - Sediment Samples: 5/5	- Chris Banlen, CTS - Reggie Castro, CTS
12/2/2019	-Scott Kalemba (SS) -Anay Shah (SSHO)	Overcast, High 32°F, Low 27°F	- AECOM and Cascade mobilized to Grand Ledge AASF to continue the SI field work Upon arrival, AECOM checked in at the Gate Guard and base personnel, reviewed the scope of work and airfield safety protocols. AECOM will contact Flight Operations via cell phone to request approval before any movement to, from, or within the airfield AECOM held a Tailgate SH&E meeting with CTS. Reviewed scope of work, SH&E concerns, AHAs, daily PFAS sampling checklist, and airfield operation protocols A larger Rotosonic drill rig was delivered to the Site on Tuesday November 26, 2019 Completed soil boring at AOI 1-11 to 50 ft bg. AECOM will install well screen upon client approval of proposed interval from 30-40 ft bgs IDW was placed into 55-gallon steel drums.	- None	- Boring Locations: 3/7 - MW Developed: 1/7 - GW Samples: 1/7 - Surface Soil Samples: 5/5 - Surface Water Samples: 8/8 - Sediment Samples: 5/5	- Chris Banlen, CTS - Reggie Castro, CTS
11/22/2019		Overcast, High 39°F, Low 25°F	- AECOM checked in at the Gate Guard and base personnel upon arrival onsite AECOM held a Tailgate SH&E meeting with CTS. Reviewed scope of work, SH&E concerns, AHAs, daily PFAS sampling checklist, and airfield operation protocols City of Grand Ledge public works personnel visited the site to ensure utility markings were in place IDW was placed into 55-gallon steel drums AECOM and CTS demobilized from Grand Ledge.	- The drill rig experienced an electrical issue and was unable to start. Drill rods have been removed but the casing remains in place at 75 ft bgs at AOI 1-15. - A local homeowner attempted to access the site and gather information about the project work. LT Layton has contacted the homeowner.	- Boring Locations: 1/7 - MW Developed: 1/7 - GW Samples: 1/7 - Surface Soil Samples: 5/5 - Surface Water Samples: 8/8 - Sediment Samples: 5/5	- Fred Dorse, CTS - Jose Perales, CTS - Jeremy Trieph, CTS

Date	AECOM Personnel	Weather	Summary Daily Activities	Issues	Progress to Date	Subcontractor(s)/ Visitors
11/21/2019	-Stephanie Tjan (SS) -Anay Shah (SSHO)	Rainy, High 52°F, Low 30°F	- AECOM checked in at the Gate Guard and base personnel upon arrival onsite. - AECOM held a Tailgate SH&E meeting with CTS. Reviewed scope of work, SH&E concerns, AHAs, daily PFAS sampling checklist, and airfield operation protocols. - Media were present for approximately an hour (1:30 to 2:30 PM). They were escorted by Jonathan Edgerly (MIARNG) and approached the site from a distance. - Surface water sample collection was completed during a qualifying rain event at AOI 1-21, AOI 1-22, AOI 1-23, and AOI 1-24. - One cooler of samples was packed and shipped to the analytical laboratory, GCAL, via FedEx for delivery on Friday, 11/22/19.	A hydraulic component on the drill rig had to be replaced because it was damaged while trying to pull out the casing. Drill rods and casing are currently stuck at 75 ft bgs.	- Boring Locations: 1/7 - MW Developed: 1/7 - GW Samples: 1/7 - Surface Soil Samples: 5/5 - Surface Water Samples: 8/8 - Sediment Samples: 5/5	- Fred Dorse, CTS - Jose Perales, CTS - Jeremy Trieph, CTS - Jonathan Edgerly, MIARNG
11/20/2019	-Stephanie Tjan (SS) -Anay Shah (SSHO)	Overcast, High 43°F, Low 35°F	- AECOM checked in at the Gate Guard and base personnel upon arrival onsite AECOM held a Tailgate SH&E meeting with CTS. Reviewed scope of work, SH&E concerns, AHAs, daily PFAS sampling checklist, and airfield operation protocols Drilling on AOI 1-15 progressed to 75 ft bgs. Will complete on 11/21/19 2 EBs were collected.	- CTS had a delayed start because the drill rig had to be repaired before commencing drilling activities.	- Boring Locations: 1/7 - MW Developed: 1/7 - GW Samples: 1/7 - Surface Soil Samples: 5/5 - Surface Water Samples: 4/4 - Sediment Samples: 5/5	- Fred Dorse, CTS - Jose Perales, CTS - Jeremy Trieph, CTS
11/19/2019	-Stephanie Tjan (SS) -Anay Shah (SSHO)	Overcast, High 42°F, Low 29°F	AHAs, daily PFAS sampling checklist, and airfield	-CTS had multiple equipment malfunctions on replacement drill rig related to a hydraulic line leak, air compressor, and head rotation. CTS had a mechanic come out to troubleshoot and plan to contact the drill rig manufacturer for further instruction.	- Boring Locations: 1/7 - MW Developed: 1/7 - GW Samples: 1/7 - Surface Soil Samples: 5/5 - Surface Water Samples: 4/4 - Sediment Samples: 5/5	- Fred Dorse, CTS - Jose Perales, CTS - Jeremy Trieph, CTS
11/18/2019	-Stephanie Tjan (SS) -Anay Shah (SSHO)	Partly Cloudy, High 45°F, Low 32°F	- AECOM checked in at the Gate Guard and base personnel upon arrival onsite AECOM held an internal Tailgate SH&E meeting. AECOM reviewed scope of work, SH&E concerns, the SSHP, daily PFAS sampling checklist, and airfield operation protocols MW development was completed at AOI 1-10 One EB was collected Field crew will start drilling at AOI 1-15 on 11/19/2019.	- Cascade's drill rig unable to be repaired. A new mini rotosonic rig will be mobilized to the site to re-start drilling activities on 11/19/2019.	- Boring Locations: 1/7 - MW Developed: 1/7 - GW Samples: 0/7 - Surface Soil Samples: 5/5 - Surface Water Samples: 4/4 - Sediment Samples: 5/5	- None

Date	AECOM Personnel	Weather	Summary Daily Activities	Issues	Progress to Date	Subcontractor(s)/ Visitors
11/15/2019	- Scott Kalemba (SS) - Anay Shah (SSHO) - Stephanie Tjan	Overcast, High 32°F, Low 29°F	- AECOM checked in at the Gate Guard and base personnel upon arrival onsite AECOM held a Tailgate SH&E meeting with CTS. Reviewed scope of work, SH&E concerns, AHAs, daily PFAS sampling checklist, and airfield operation protocols Location data were collected using a handheld GPS for the sample locations and the areas where IDW was placed.	Drill rig is having electrical issues and will not start. CTS is in the process of contacting electricians to come out and troubleshoot. MW development equipment was malfunctioning, a replacement is being sent via overnight to AECOM's hotel.	- Boring Locations: 1/7 - MW Developed: 0/7 - GW Samples: 0/7 - Surface Soil Samples: 5/5 - Surface Water Samples: 4/4 - Sediment Samples: 5/5	- Fred Dorse, CTS - Jose Perales, CTS
11/14/2019	- Scott Kalemba (SS) - Anay Shah (SSHO)	Overcast, High 32°F, Low 27°F	 - AECOM checked in at the Gate Guard and base personnel upon arrival onsite. - AECOM held a Tailgate SH&E meeting with CTS. Reviewed scope of work, SH&E concerns, AHAs, daily PFAS sampling checklist, and airfield operation protocols. - Drilling, and subsequent MW installation, was completed at AOI 1-10. Will develop on 11/15/19. - CTS will set all MW pads at the end of all borings and MW installations. - Location data were collected using a handheld GPS for the sample locations and the areas where IDW was placed. 		- Boring Locations: 1/7 - Surface Soil Samples: 5/5 - Surface Water Samples: 4/4 - Sediment Samples: 5/5 - GW Samples: 0/7	- Fred Dorse, CTS - Jose Perales, CTS
11/13/2019	- Scott Kalemba (SS) - Anay Shah (SSHO)	Overcast, High 23°F, Low 19°F	 - AECOM checked in at the Gate Guard and base personnel upon arrival onsite. - AECOM held a Tailgate SH&E meeting with CTS. Reviewed scope of work, SH&E concerns, AHAs, daily PFAS sampling checklist, and airfield operation protocols. - Drilling on AOI 1-10 continued and progressed to 90 ft bg. Will complete on 11/14/19. - AECOM was able to obtain as-built drawings of the Base from Base personnel. 	Inclement weather is hindering and slowing down drilling activities again. Components of the drill rig are freezing and base personnel are allowing CTS to store their rig and water totes inside one of the hangers to thaw.	- Boring Locations: 0/7 - Surface Soil Samples: 5/5 - Surface Water Samples: 4/4 - Sediment Samples: 5/5 - GW Samples: 0/7	- Fred Dorse, CTS - Jose Perales, CTS
11/12/2019	- Scott Kalemba (SS) - Anay Shah (SSHO)	Snow, High 23°F, Low 5°F	- AECOM checked in at the Gate Guard and base personnel upon arrival onsite. - AECOM held a Tailgate SH&E meeting with CTS. Reviewed scope of work, SH&E concerns, AHAs, daily PFAS sampling checklist, and airfield operation protocols. - Drilling on AOI 1-10 progressed to 70 ft bg. Will complete on 11/13/19. - Communicated with Operations to have vehicles and concrete barriers relocated from AOI 1-13 location. - One EB was collected.	Inclement weather is hindering and slowing down drilling activities. Base personnel are allowing CTS to store their water totes inside one of the hangers to prevent freezing overnight.	- Boring Locations: 0/7 - Surface Soil Samples: 5/5 - Surface Water Samples: 4/4 - Sediment Samples: 5/5 - GW Samples: 0/7	- Fred Dorse, CTS - Jose Perales, CTS

Date	AECOM Personnel	Weather	Summary Daily Activities	Issues	Progress to Date	Subcontractor(s)/ Visitors
11/11/2019	- Scott Kalemba (SS) - Anay Shah (SSHO)	Snow, High 25°F, Low 15°F	- AECOM checked in at the Gate Guard and base personnel upon arrival onsite AECOM held a Tailgate SH&E meeting with CTS. Reviewed scope of work, SH&E concerns, AHAs, daily PFAS sampling checklist, and airfield operation protocols CTS unloaded equipment/supplies and set-up on AOI 1-10 to begin on 11/12/19.	- Inclement weather hindered CTS's mobilization which resulted in a later arrival time at the Site.	- Boring Locations: 0/7 - Surface Soil Samples: 5/5 - Surface Water Samples: 4/4 - Sediment Samples: 5/5 - GW Samples: 0/7	- Fred Dorse, Cascade (CTS) - Jose Perales, CTS
11/8/2019	- Scott Kalemba (SS)	Sunny, High 34°F, Low 25°F	 - AECOM checked in at the Gate Guard and base personnel upon arrival onsite. - AECOM took delivery of monitoring well supplies, staged outside the Supply Room. - One cooler of samples was packed and shipped to the analytical laboratory, GCAL, via FedEx for delivery on Saturday 11/09/19. - No other field activities occurred onsite. 	- None	- Boring Locations: 0/7 - Surface Soil Samples: 5/5 - Surface Water Samples: 4/4 - Sediment Samples: 5/5 - GW Samples: 0/7	- None
11/7/2019	- Scott Kalemba (SS)	Sunny, High 32°F, Low 21°F	- AECOM checked in at the Gate Guard and base personnel upon arrival onsite. - AECOM held an internal Tailgate SH&E meeting. AECOM reviewed scope of work, SH&E concerns, the SSHP, daily PFAS sampling checklist, and airfield operation protocols. - Underground utility locate was completed.		- Boring Locations: 0/7 - Surface Soil Samples: 5/5 - Surface Water Samples: 4/4 - Sediment Samples: 5/5 - GW Samples: 0/7	- USIC Public Utility Locators
11/6/2019		Overcast, occasional snow flurries, High 39°F, Low 27°F	- AECOM checked in at the Gate Guard and base personnel upon arrival onsite AECOM held an internal Tailgate SH&E meeting. AECOM reviewed scope of work, SH&E concerns, the SSHP, daily PFAS sampling checklist, and airfield operation protocols Sediment sample collection was completed at AOI 1-25 Surface soil sample collection was completed at AOI 1-16, AOI 1-17, AOI 1-18, AOI 1-19, and AOI 1-20 One EB and one FRB were collected.	- None	- Boring Locations: 0/7 - Surface Soil Samples: 5/5 - Surface Water Samples: 4/4 - Sediment Samples: 5/5 - GW Samples: 0/7	- None
11/5/2019	- Scott Kalemba (SS)	Sunny, High 43°F, Low 27°F	- AECOM checked in at the Gate Guard and base personnel upon arrival onsite AECOM held an internal Tailgate SH&E meeting. AECOM reviewed scope of work, SH&E concerns, the SSHP, daily PFAS sampling checklist, and airfield operation protocols Surface water sample collection was completed at AOI 1-21, AOI 1-22, AOI 1-23, and AOI 1-24 Sediment sample collection was also completed at AOI 1-21, AOI 1-22, AOI 1-23, and AOI 1-24.	- None	- Boring Locations: 0/7 - Surface Soil Samples: 0/5 - Surface Water Samples: 4/4 - Sediment Samples: 4/5 - GW Samples: 0/7	- None

Date	AECOM Personnel	Weather	Summary Daily Activities	Issues	Progress to Date	Subcontractor(s)/ Visitors
11/4/2019	- Scott Kalemba (SS)	Sunny, High 54°F, Low 34°F	work and airfield safety protocols. AECOM will contact Flight Operations via cell phone to request approval before any movement to, from, or within the airfield. - AECOM held an internal Tailgate SH&E meeting. AECOM reviewed scope of work, SH&E concerns, the SSHP, daily PFAS sampling checklist, and airfield operation protocols. - AECOM staked all sample locations for utility clearance. - AECOM obtained Certificates of Survey for the Grand Ledge AASF and Annex Building from CW4 Randolph Bebee.	be no work allowed on the Airfield on Tuesdays and Thursday, except for hand augering (AOI 1-16 through AOI 1-20) and SRB sampling (AOI 1-21 through AOI 1-24). Mondays and Fridays are the best days for drilling activities to occur on the Airfield. - Location AOI 2-4 is in asphalt. - Location AOI 1-13 is potentially in concrete, will verify during utility clearance walk on November 7th.		- None
			MOBILIZATION NO. 1			
5/10/2019	Mike Glinski (SSHO) Scott Kalemba	40s, Sunny	- AECOM held internal kickoff meeting. Reviewed scope of work, H&S as well as daily PFAS sampling checklist Sampled surface soil at AOI-1-3 and AOI-1-4 Sampled soil 2-4 feet bgs at AOI-1-3 Completed groundwater sampling of temporary well AOI-2-3 Abandoned all temporary wells AECOM packed coolers and shipped samples to laboratory AECOM demobilized from Grand Ledge.		Soil Borings: 9/9 Temporary Wells Installed: 9/9 Groundwater Samples: 9/9 Soil Samples: 16/27 (16/16) Surface Water Samples: 3/3 Sediment Samples: 3/3	NA
5/9/2019	Mike Glinski (SSHO) Scott Kalemba	60s, Rain	- AECOM held internal kickoff meeting. Reviewed scope of work, H&S as well as daily PFAS sampling checklist Sampled surface soil at AOI-1-1, AOI-1-2, AOI-2-1, AOI-2-2, and AOI-2-3 Sampled soil 2-4 feet Bgs at AOI-1-2, AOI-1-6, and AOI-2-2 Completed groundwater sampling of temporary wells at AOI-1-1, AOI5, AOI-2-1, and AOI-2-2.	- AOI-2-3 went dry during groundwater sampling. As a result, it will be allowed to recharge and will be sampled the morning of 05/10/2019. - Depth-to-water in soil borings AOI-1-2, AOI-1-5, and AOI-2-2, was shallower than 5 ft Bgs and as a result, only 2 soil samples were collected. (0-2 and 2-4 ft Bgs). - Depth-to-water in soil borings AOI-1-1, AOI-2-1, and AOI-2-3 was shallower than 3 ft Bgs and as a result, only 1 soil sample was collected. (0-2 ft Bgs).		NA

Date	AECOM Personnel	Weather	Summary Daily Activities	Issues	Progress to Date	Subcontractor(s)/ Visitors
5/8/2019	Mike Glinski (SSHO) Scott Kalemba	40s, Sunny	temporary wells at AOI-1-1, AOI-1-5, and AOI-1-6.	zone was observed above the clay layer.	Soil Borings: 9/9 Temporary Wells Installed: 9/9 Groundwater Samples: 4/9 Soil Samples: 5/27 Surface Water Samples: 3/3 Sediment Samples: 3/3	Cascade (Todd Grossman, Luke Taylor)
5/7/2019	Mike Glinski (SSHO) Scott Kalemba	30s, Rain		3, AOI-2-1, and AOI-2-3 was between 4 to 6 feet	Soil Borings: 6/9 Temporary Wells Installed: 6/9 Groundwater Samples: 0/9 Soil Samples: 2/27 Surface Water Samples: 3/3 Sediment Samples: 3/3	Cascade (Todd Grossman, Luke Taylor)

Notes

AHA = activity hazard analysis

AOI = area of interest

ARNG = Army National Guard

AASF = Army Aviation Support Facility

bgs = below ground surface

CTS = Cascade Technical Services

DHHS = Department of Health and Human Services

DMVA = Department of Military and Veterans Affairs

DPT = direct push technology

EB = equipment blank

FRB = field reagent blank

ft = feet

GPS = Global Positioning System

HA = hand auger

IDW = investigation derived waste

MIARNG = Michigan Army National Guard

MW = Monitoring Well

PFAS = per- and polyfluoroalkyl substances

Date	AECOM Personnel	Weather	Summary Daily Activities	Issues	Progress to Date	Subcontractor(s)/ Visitors
------	-----------------	---------	--------------------------	--------	------------------	-------------------------------

PM = Project Manager SH&E = Safety, Health, and Environment SS = Site Supervisor SSHO = Site Safety and Health Officer

Tjan, Stephanie

From: Mitchell, Claire

Sent: Sunday, November 24, 2019 9:05 AM

To: Packer, Bonnie M CTR NG NGB ARNG (US); Tim Peck (timothy,j.peck@usace.army.mil);

Hess, Pamela S CPT USARMY NG (US); Gragert, Steven CIV USARMY CENWO (USA);

Lyman, Patricia (DMVA); Edgerly, Jonathan (DMVA)

Cc: Gwinn, Rosa; Kalemba, Scott; Shah, Anay; Wilhelm, Jake; Tjan, Stephanie
Subject: ARNG PFAS: Log of Daily Notice for Grand Ledge- Proposed Path Forward
Attachments: Markup_Fig_17-1_Grand_Ledge_AASF_Supplemental_Sampling_Locations_

20191029.pdf; Log of Daily Notice of Field Activity_Grand Ledge.xlsx

Good morning,

Please find attached the Log of Daily Notice of Field Activity for the Supplemental Site Investigation (SI), Second Mobilization, at Grand Ledge AASF and Armory, Michigan for Friday, 11/22.

I have had an opportunity to speak with representatives from ARNG, MIARNG and USACE regarding our plan for next steps based on the difficult lithologic conditions that have been encountered at the site.

Our proposed path forward is as follows:

- 1.) Proceed with obtaining ROEs and completing residential drinking water sampling within target zones south of the facility (exact locations to be discussed with the project team).
- 2.) Discontinue attempts to complete remaining deep well locations within bedrock material.
 - a. AOI 1-10 has already been installed at 80-100 feet bgs, as described in the QAPP.
 - b. AOI 1-15 has been drilled down to 75 ft bgs. We propose completing this well at the current boring depth and installing the well screen from top of bedrock (approx. 60 ft bgs) to 75 ft bgs.
 - c. Proposed deep wells, AOI 1-14 and AOI 2-4, proposed to be installed to a depth of approximately 50 ft bgs as opposed to 100 ft bgs.
- 3.) AOI 1-11, 1-12, 1-13 will be installed as outlined in the QAPP to a depth of 50 ft bgs.

Based on my conversations with ARNG, MIARNG and USACE, I believe what is outlined above is an agreeable path forward; however, please reply all to this email regarding your feedback on how to proceed.

Thank you, Claire

Claire Mitchell, PE, PMP
Project Manager, Environmental Engineer
D 703-682-9098
M 314-477-1587
claire.mitchell@aecom.com

AECOM

3101 Wilson Boulevard Suite 900 Arlington, VA 22201 P 703-682-4900 aecom.com

Imagine it. Delivered.

THIS PAGE INTENTIONALLY BLANK